Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_12_a0, author = {B. N. Chetverushkin and A. V. Saveliev and V. I. Saveliev}, title = {Modeling of problems in magnetohydrodynamics on high performance computational systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--13}, publisher = {mathdoc}, volume = {32}, number = {12}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_12_a0/} }
TY - JOUR AU - B. N. Chetverushkin AU - A. V. Saveliev AU - V. I. Saveliev TI - Modeling of problems in magnetohydrodynamics on high performance computational systems JO - Matematičeskoe modelirovanie PY - 2020 SP - 3 EP - 13 VL - 32 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_12_a0/ LA - ru ID - MM_2020_32_12_a0 ER -
%0 Journal Article %A B. N. Chetverushkin %A A. V. Saveliev %A V. I. Saveliev %T Modeling of problems in magnetohydrodynamics on high performance computational systems %J Matematičeskoe modelirovanie %D 2020 %P 3-13 %V 32 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_12_a0/ %G ru %F MM_2020_32_12_a0
B. N. Chetverushkin; A. V. Saveliev; V. I. Saveliev. Modeling of problems in magnetohydrodynamics on high performance computational systems. Matematičeskoe modelirovanie, Tome 32 (2020) no. 12, pp. 3-13. http://geodesic.mathdoc.fr/item/MM_2020_32_12_a0/
[1] B. N. Chetverushkin, N. D'Ascenzo, A. V. Saveliev, V. I. Saveliev, “Simulation of Astrophysical Phenomena on the Basis of High-Performance Computations”, Doklady Mathematics, 95:1 (2017), 68–71 | DOI | MR | Zbl
[2] B. N. Chetverushkin, “Superkompiuternye tekhnologii: problemy i perspektivy blizhaishego budushchego”, Vestnik RAN, 88:12 (2018), 1083–1089
[3] B. N. Chetverushkin, N. D'Ascenzo, V. I. Saveliev, “Kinetically consistent magnetogasdynamics equations and their use in supercomputer computations”, Doklady Mathematics, 90:1 (2014), 495–498 | DOI | MR | Zbl
[4] B. Chetverushkin, N. D'Ascenzo, S. Ishanov, V. Saveliev, “Hyperbolic Type Explicit Kinetic Scheme of Magneto Gas Dynamics for High Performance Computing Systems”, Russian J. Num. Analys. Math. Modeling, 30:1 (2015), 27–36 | MR | Zbl
[5] M. A. Abramowicz, G. Björnsson, I. E. Pringle, Theory of Black Hole Accretion Discs, Cambridge University Press, Cambridge, 1999 | MR
[7] B. N. Chetverushkin, A. V. Saveliev, V. I. Saveliev, “Compact Quasi-Gasdynamic System for High-Performance Computations”, Comp. Math. Math. Phys, 59:3 (2019), 493–500 | DOI | MR | Zbl
[8] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008, 298 pp. | MR
[9] V. V. Vedeniapin, Kineticheskie uravneniya Boltzmanna i Vlasova, Fizmatlit, M., 2001, 112 pp.
[10] C. Cerignani, Theory and application of the Boltzmann Equation, Scottish Academic Press, Edinburgh, 1988 | MR
[11] B. N. Chetverushkin, A. V. Gulin, “Explicit Schemes and Numerical Simulation Using Ultra-high-Performance Computer Systems”, Doklady Mathematics, 86:2 (2012), 681–683 | DOI | MR | Zbl
[12] A.A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001, 786 pp. | MR | MR | Zbl
[13] V. M. Novikov, “The Results of the investigations of Russian Research Center “Kurchatov Institute” on Molten Salt Applications to Problems of Nuclear Energy Systems”, Proc. AIP Conf., 346 (1995), 138–147 | DOI
[14] B. Wang, Russian MBIR Sodium Cooled Fast Reactor on Track to 2020 Completion, (Retrieved 8 September 2018) nextbigfuture.com
[15] J. K. Fink, L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, ANL/RE-95/2
[16] U. Ghia, K. N. Ghia, C. T. Shin, “High Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method”, J. Comp. Phys., 48:3 (1982), 387–411 | DOI | MR | Zbl
[17] L. G. Loitsianskii, Mekhanika zhidkosti i gaza, Nauka, M., 1978, 677 pp.