Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_10_a7, author = {L. G. Strakhovskaya}, title = {On three-dimensional numerical modelling hydrodynamic and gravitational instability of the protoplanetary disk}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {105--118}, publisher = {mathdoc}, volume = {32}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a7/} }
TY - JOUR AU - L. G. Strakhovskaya TI - On three-dimensional numerical modelling hydrodynamic and gravitational instability of the protoplanetary disk JO - Matematičeskoe modelirovanie PY - 2020 SP - 105 EP - 118 VL - 32 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a7/ LA - ru ID - MM_2020_32_10_a7 ER -
%0 Journal Article %A L. G. Strakhovskaya %T On three-dimensional numerical modelling hydrodynamic and gravitational instability of the protoplanetary disk %J Matematičeskoe modelirovanie %D 2020 %P 105-118 %V 32 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a7/ %G ru %F MM_2020_32_10_a7
L. G. Strakhovskaya. On three-dimensional numerical modelling hydrodynamic and gravitational instability of the protoplanetary disk. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 105-118. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a7/
[1] J. H. Jeans, “The Stability of a Spherical Nebula”, Philosophical Transactions of the Royal Soc. of London. Ser. A. Containing Pap. of a Math. or Phys. Character, 199 (1902), 1–53
[2] A. M. Fridman, A. V. Khoperskov, Fizika galakticheskikh diskov, Fizmatlit, M., 2011, 640 pp.
[3] O. M. Belotserkovskii, A. M. Oparin, V. M. Chechetkin, Turbulentnost. Novye podkhody, Nauka, M., 2003
[4] P. G. Drazin, Introduction to hydrodynamic stability, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[5] Philip J. Armitage, Physical Processes in Protoplanetary Disks, 1 Dec 2017, arXiv: 1509.06382v2 [astro-ph.SR]
[6] P. J. Schmid, D. S. Henningson, Stability and Transition in Shear Flows, Springer, New York, 2001 | MR | Zbl
[7] A. Iu. Lugovskii, S. I. Mukhin, Iu. P. Popov, V. M. Chechetkin, “Razvitie krupnomasshtabnoi neustoichivosti v akkretsionnykh zvezdnykh diskakh i ee vliianie na pereraspredelenie uglovogo momenta”, AZh, 85:10 (2008), 901–905
[8] T. G. Elizarova, A. A. Zlotnik, M. A. Istomina, “Gidrodinamicheskie aspekty formirovaniia spiralno-vikhrevykh struktur vo vrashchaiushchikhsia gazovykh diskakh”, AZh, 95:1 (2018), 11–21
[9] L. G. Strakhovskaya, “On the Steady States of a Gravitating Gas Disk”, Mathematical Models and Computer Simulations, 10:1 (2018), 15–25 | MR
[10] K. M. Kratter, Ch. D. Matznerar, M. R. Krumholz, R. I. Klein, On the role of disks in the formation of stellar systems: a numerical parameter study of rapid accretion, 20 Jul 2009, arXiv: 0907.3476v1 [astro-ph.SR]
[11] A. Toomre, “On the gravitational stability of a disk of stars”, ApJ, 139 (1964), 1217–1238
[12] S. K. Godunov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.
[13] R. P. Fedorenko, Vvedenie v vychislitel'nuyu fiziku, 2-e izd, Izd. Dom «Intellekt», Dolgoprudnyj, 2008, 504 pp.
[14] M. V. Abakumov, S. I. Mukhin, Yu. P. Popov, V. M. Chechetkin, “Statsionarnye diskovye struktury okolo gravitiruyushchikh kompaktnykh ob'ektov”, AZH, 73:3 (1996), 407–418 | Zbl
[15] Jean-Louis Tassoul, Theory of rotating stars, Princeton Univ. Press, Princeton, 1978, 472 pp.
[16] L. G. Strakhovskaya, “Role of gravity in the formation of the circumstellar gas disk”, KIAM Preprint, 2013, 082, 24 pp.
[17] L. G. Strakhovskaia, “Formirovanie spiralno-vikhrevykh struktur v gravitiruiushchem protoplanetnom diske”, Tezisy doklada na mezhd. konf. pamiati K.I. Babenko (Pushchino, 2019), 148–149