Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 62-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the development and program implementation of a computational algorithm for modeling a process of anomalous diffusion. The mathematical model is formulated as an initial-boundary value problem for a nonlinear fractional order partial differential equation. An implicit finite-difference scheme based on an increased accuracy order approximation for the Caputo derivative is constructed. An application program was designed to perform computer simulation of the anomalous diffusion process. The numerical analysis of the accuracy of approximate solutions is conducted using a test-problem. The results of computational experiments are presented on the example of the modeling of a fractal nonlinear dynamic reaction-diffusion system.
Mots-clés : anomalous diffusion equation, reaction-diffusion process
Keywords: Caputo fractional derivative, implicit finite difference scheme.
@article{MM_2020_32_10_a4,
     author = {L. I. Moroz and A. G. Maslovskaya},
     title = {Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a4/}
}
TY  - JOUR
AU  - L. I. Moroz
AU  - A. G. Maslovskaya
TI  - Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 62
EP  - 76
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a4/
LA  - ru
ID  - MM_2020_32_10_a4
ER  - 
%0 Journal Article
%A L. I. Moroz
%A A. G. Maslovskaya
%T Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme
%J Matematičeskoe modelirovanie
%D 2020
%P 62-76
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a4/
%G ru
%F MM_2020_32_10_a4
L. I. Moroz; A. G. Maslovskaya. Numerical simulation of an anomalous diffusion process based on the higher-order accurate scheme. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 62-76. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a4/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives. Theory and Application, Gordon Breach Sci. Publ., Switzerland, Philadelphia, Pa, USA, 1993, 976 pp. | MR

[2] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Fractional differential equations, 198, Acad. Press Inc., San Diego, CA, USA, 1999, 340 pp. | MR | Zbl

[3] V. V. Uchaikin, Metod drobnykh proizvodnykh, Artishok, Ulianovsk, 2008, 512 pp.

[4] W. Chen, H. Sun, X. Zhang, D. Korošak, “Anomalous diffusion modeling by fractal and fractional derivatives”, Computers Math. with Applicat., 59:5 (2010), 1754–1758 | DOI | MR | Zbl

[5] X. Liang, F. Gao, C. Zhou et al, “An anomalous diffusion model based on a new general fractional operator with the Mittag-Leffler function of Wiman type”, Advances in Difference Equation, 25 (2018), 1–11 | MR

[6] A. N. Bogolyubov, A. A. Koblikov, D. D. Smirnova, N. E. Shapkina, “Matematicheskoe modelirovanie sred s vremennoj dispersiej pri pomoshchi drobnogo differentsirovaniya”, Matem. model, 25:12 (2013), 50–64 | MR | Zbl

[7] I. Petras, Fractional-order nonlinear systems. Modeling, analysis and simulation, Springer-Verlag, Berlin–Heidelberg, 2011, 218 pp. | Zbl

[8] R. Scherera, S. L. Kallab, Y. Tangc, J. Huang, “The Grünwald-Letnikov method for fractional differential equations”, Computers Math. with Appl., 62 (2011), 902–917 | DOI | MR

[9] E. Sousa, “How to approximate the fractional derivative of order $1\alpha\leqslant 2$”, International journal of bifurcation and chaos, 22:4 (2012), 1–6 | MR

[10] K. Diethelm, N. J. Ford, A. D. Freed, Yu. Luchko, “Algorithms for the fractional calculus: a selection of numerical method”, Comp. Methods Appl. Mech. Eng., 194 (2005), 743–773 | DOI | MR | Zbl

[11] L. Xiaoting, H. Sun, Y. Zhang, Z.-J. Fu, “A scale-dependent finite difference approximation for time fractional differential equation”, Computational Mechanics, 63 (2019), 429–442 | MR | Zbl

[12] U. Ali, F. A. Abdullah, A. I. Ismail, “Crank-Nicolson finite difference method for two-dimensional fractional sub-diffusion equation”, J. of Interpolation and Approximation in Sci. Comp., 2017:2 (2017), 18–29 | MR

[13] B. R. Sontakke, A. S. Shelke, “Approximate scheme for time fractional diffusion equation and its applications”, Global J. of Pure and Applied Math., 13:8 (2017), 4333–4345

[14] I. Podlubny, “Matrix approach to discrete fractional calculus II: partial differential equations”, Journal of Computational Physics, 3 (2000), 359–386 | MR | Zbl

[15] B. J. Szekeres; F. Izsák, “A finite difference method for fractional diffusion equations with Neumann boundary conditions”, Open Mathematics, 13:1 (2015), 553–561 | MR

[16] A. A. Petukhov, D. L. Reviznikov, “Algoritmy chislennogo resheniia drobno-differentsialnykh uravnenii”, Vestnik MAI, 16 (2009), 228–234

[17] C. Li, R. Wu, H. Ding, “High-order approximation to Caputo derivative and Caputo-type advection-diffusion equations”, Comm. in Appl. Industrial Math., 6:2 (2015), 1–33 | MR

[18] Y. Dimitrov, “Three-point compact approximation for the Caputo fractional derivative”, Communications on Applied Mathematics and Computation, 31:4 (2017), 413–442 | MR | Zbl

[19] H. Ding, “A high-order numerical algorithm for two-dimensional time-space tempered fractional diffusion-wave equation”, Applied Numerical Mathematics, 135 (2019), 30–46 | MR | Zbl

[20] L. I. Moroz, A. G. Maslovskaia, “Drobno-differentsialnaia model protsessa teploprovodnosti segnetoelectricheskikh materialov v usloviiakh intensivnogo nagreva”, Matematika i mathematicheskoe modelirovanie, 2 (2019), 29–47

[21] W. Deng, “Short memory principle and a predictor-corrector approach for fractional differentional equations”, J. of Comp. and Applied Mathematics, 206 (2007), 174–188 | DOI | MR | Zbl

[22] R. P. Meilanov, S. A. Sadykov, “Fractal model for polarization switching kinetics in ferroelectric crystals”, Technical Physics, 44 (1999), 595–596

[23] Z. Bin, Model for coupled ferroelectric hysteresis using time fractional operators: Application to innovative energy harvesting, diss. ... doctor of science, Lyon, 2014, 95 pp.

[24] L. I. Moroz, A. G. Maslovskaya, “Hybrid stochastic fractal-based approach to modelling ferroelectrics switching kinetics in injection mode”, MM, 12:3 (2020), 348–356 | MR | Zbl

[25] K. M. Rabe, C. Ahn, J. M. Triscone, Physics of ferroelectrics: a modern perspective, Springer, Berlin, 2007, 388 pp.