Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2020_32_10_a1, author = {Yu. A. Eremin and A. G. Sveshnikov}, title = {Mathematical model of plasmon nanolaser resonator accounting for the non-local effect}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--33}, publisher = {mathdoc}, volume = {32}, number = {10}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/} }
TY - JOUR AU - Yu. A. Eremin AU - A. G. Sveshnikov TI - Mathematical model of plasmon nanolaser resonator accounting for the non-local effect JO - Matematičeskoe modelirovanie PY - 2020 SP - 21 EP - 33 VL - 32 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/ LA - ru ID - MM_2020_32_10_a1 ER -
Yu. A. Eremin; A. G. Sveshnikov. Mathematical model of plasmon nanolaser resonator accounting for the non-local effect. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 21-33. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/
[1] M. S. Tame, K. R. McEnery, S. K. Özdemir et al, “Quantum plasmonics”, Nature Phys., 9 (2013), 329–340 | DOI
[2] M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi et al, “Roadmap on plasmonics”, J. Opt., 20 (2018), 043001 | DOI
[3] D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nat. Photonics, 4 (2010), 83–91 | DOI
[4] D. Xu, X. Xiong, L. Wu et al, “Quantum plasmonics: new opportunity in fundamental and applied photonics”, Review Advances in Optics and Photonics, 10:4 (2018), 703–756 | DOI
[5] D. J. Bergman, M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems”, Phys. Rev. Lett., 90 (2003), 027402 | DOI
[6] M. A. Noginov, G. Zhu, A. M. Belgrave et al, “Demonstration of a Spaser-Based Nanolaser”, Nature, 460 (2009), 1110–1112 | DOI
[7] M. Premaratne, M. Stockman, “Theory and technology of SPASERs”, Review Advances in Optics and Photonics, 9:1 (2017), 79–128
[8] V. I. Balykin, “Plasmon nanolaser: current state and prospects”, Advances in Physical Sciences, 61:9 (2018), 846–870 | DOI
[9] H.-P. Solowan, C. Kryschi, “Facile Design of a Plasmonic Nanolaser”, Condens. Matter, 2:8 (2017), 1–7
[10] M. B. Gawande, A. Goswami, T. Asefa et al., “Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis”, Chemical Society Rev., 44 (2015), 7540–7590 | DOI
[11] H.-P. Feng, L. Tang, G.-M. Zeng et al, “Core-shell nanomaterials: Applications in energy storage and conversion”, Advances in Colloid and Interface Science, 267 (2019), 26–46 | DOI
[12] P. K. Kalambate, Dhanjai, Z. Huang et al, “Core@shell nanomaterials based sensing devices: A review”, Trends in Analytical Chemistry, 115 (2019), 147–161 | DOI
[13] P. Yu, Y. Yao, J. Wu et al, “Effects of Plasmonic Metal CoreDielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells”, Sci. Reports, 7 (2017), 7696–7705
[14] Z. Izadiyana, K. Shamelia, M. Miyakea et al, “Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect”, Materials Science and Engineering, 96 (2019), 51–57 | DOI
[15] G. Toscano, J. Straubel, A. Kwiatkowski et al, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics”, Nat. Comm., 6:7132 (2015) | Zbl
[16] N. A. Mortensen, S. Raza, M. Wubs et al, “A generalized non-local optical response theory for plasmonic nanostructures”, Nat. Comm., 5:3809 (2014)
[17] M. Barbry, P. Koval, F. Marchesin, R. Esteban et al, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics”, Nano Lett., 15 (2015), 3410–3419 | DOI
[18] M. Wubs, A. Mortensen, “Nonlocal Response in Plasmonic Nanostructures”, Quantum Plasmonics, eds. S.I. Bozhevolnyi et al., Springer, Switzerland, 2017, 279–302 | DOI
[19] Iu. A. Eremin, A. G. Sveshnikov, “Analiz vliianiia effekta nelokalnosti na kharakteristiki rezonatorov plazmonnogo nanolazera metodom Diskretnykh istochnikov”, Vestnik MGU. Ser. 3. Fizika. Astronomiia, 2019, no. 3, 48–53
[20] C. Jerez-Hanckes, J.-C. Nedelec, Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides, Research report No 2010-07, ETH, Swiss Federal Institute of Technology, Zurich, February 2010, 25 pp. | MR
[21] Yu. A. Eremin, A. G. Sveshnikov, “Influence of Non-Local Effect on the Scattering Properties of NonSpherical Plasmonic Nanoparticles on a Substrate”, Mathematical Models and Computer Simulations, 10:6 (2018), 730–740 | DOI | MR | Zbl
[22] Yu. A. Eremin, A. G. Sveshnikov, “Near Field Formation via Colloid Particles in Problems of Nanoprocessing Silicon Substrates”, Math. Mod. Comp. Simul., 10:1 (2018), 36–44 | DOI | MR | Zbl
[23] http://www.refractiveindex.info
[24] Iu. A. Eremin, A. G. Sveshnikov, “Discrete Sources Method for the Study of Influence Nonlocality on Characteristics of the Plasmonic Nanolaser Resonators”, Comp. Math. Math. Physics, 59:12 (2019), 2164–2172 | MR
[25] E. Eremina, Y. Eremin, T. Wriedt, “Computational Nano-Optic Technology based on Discrete Sources Method (review)”, J. Modern Opt., 58:5-6 (2011), 384–399 | Zbl
[26] Yu. A. Eremin, N. V. Grishina, “Modeling of nanoshells spectra in evanescent wave field via Discrete Sources Method”, J. Quant. Spectrosc. Radiat. Trans., 100 (2006), 122–130 | DOI