Mathematical model of plasmon nanolaser resonator accounting for the non-local effect
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 21-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the Discrete Sources method, a mathematical model of the plasmon nanolaser resonator deposited on the prism surface in an active ambient medium has been developed and implemented, which allows to take into account the Non-local Effect (NLE) in plasmon material. The resonator characteristics were optimized, which made it possible to obtain a field enhancement on the external surface of the resonator by more than two orders of magnitude. The influence of the NLE on the enhancement in the spectral wavelength range was investigated. It has been shown that accounting for the NLE leads to a significant decrease in the near-field intensity.
Keywords: Discrete Sources Method, light scattering, plasmon nanolaser, Non-local Effect.
@article{MM_2020_32_10_a1,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {Mathematical model of plasmon nanolaser resonator accounting for the non-local effect},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--33},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - Mathematical model of plasmon nanolaser resonator accounting for the non-local effect
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 21
EP  - 33
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/
LA  - ru
ID  - MM_2020_32_10_a1
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T Mathematical model of plasmon nanolaser resonator accounting for the non-local effect
%J Matematičeskoe modelirovanie
%D 2020
%P 21-33
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/
%G ru
%F MM_2020_32_10_a1
Yu. A. Eremin; A. G. Sveshnikov. Mathematical model of plasmon nanolaser resonator accounting for the non-local effect. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 21-33. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a1/

[1] M. S. Tame, K. R. McEnery, S. K. Özdemir et al, “Quantum plasmonics”, Nature Phys., 9 (2013), 329–340 | DOI

[2] M. I. Stockman, K. Kneipp, S. I. Bozhevolnyi et al, “Roadmap on plasmonics”, J. Opt., 20 (2018), 043001 | DOI

[3] D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit”, Nat. Photonics, 4 (2010), 83–91 | DOI

[4] D. Xu, X. Xiong, L. Wu et al, “Quantum plasmonics: new opportunity in fundamental and applied photonics”, Review Advances in Optics and Photonics, 10:4 (2018), 703–756 | DOI

[5] D. J. Bergman, M. I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems”, Phys. Rev. Lett., 90 (2003), 027402 | DOI

[6] M. A. Noginov, G. Zhu, A. M. Belgrave et al, “Demonstration of a Spaser-Based Nanolaser”, Nature, 460 (2009), 1110–1112 | DOI

[7] M. Premaratne, M. Stockman, “Theory and technology of SPASERs”, Review Advances in Optics and Photonics, 9:1 (2017), 79–128

[8] V. I. Balykin, “Plasmon nanolaser: current state and prospects”, Advances in Physical Sciences, 61:9 (2018), 846–870 | DOI

[9] H.-P. Solowan, C. Kryschi, “Facile Design of a Plasmonic Nanolaser”, Condens. Matter, 2:8 (2017), 1–7

[10] M. B. Gawande, A. Goswami, T. Asefa et al., “Core-shell nanoparticles: synthesis and applications in catalysis and electrocatalysis”, Chemical Society Rev., 44 (2015), 7540–7590 | DOI

[11] H.-P. Feng, L. Tang, G.-M. Zeng et al, “Core-shell nanomaterials: Applications in energy storage and conversion”, Advances in Colloid and Interface Science, 267 (2019), 26–46 | DOI

[12] P. K. Kalambate, Dhanjai, Z. Huang et al, “Core@shell nanomaterials based sensing devices: A review”, Trends in Analytical Chemistry, 115 (2019), 147–161 | DOI

[13] P. Yu, Y. Yao, J. Wu et al, “Effects of Plasmonic Metal CoreDielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells”, Sci. Reports, 7 (2017), 7696–7705

[14] Z. Izadiyana, K. Shamelia, M. Miyakea et al, “Green fabrication of biologically active magnetic core-shell Fe3O4/Au nanoparticles and their potential anticancer effect”, Materials Science and Engineering, 96 (2019), 51–57 | DOI

[15] G. Toscano, J. Straubel, A. Kwiatkowski et al, “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics”, Nat. Comm., 6:7132 (2015) | Zbl

[16] N. A. Mortensen, S. Raza, M. Wubs et al, “A generalized non-local optical response theory for plasmonic nanostructures”, Nat. Comm., 5:3809 (2014)

[17] M. Barbry, P. Koval, F. Marchesin, R. Esteban et al, “Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics”, Nano Lett., 15 (2015), 3410–3419 | DOI

[18] M. Wubs, A. Mortensen, “Nonlocal Response in Plasmonic Nanostructures”, Quantum Plasmonics, eds. S.I. Bozhevolnyi et al., Springer, Switzerland, 2017, 279–302 | DOI

[19] Iu. A. Eremin, A. G. Sveshnikov, “Analiz vliianiia effekta nelokalnosti na kharakteristiki rezonatorov plazmonnogo nanolazera metodom Diskretnykh istochnikov”, Vestnik MGU. Ser. 3. Fizika. Astronomiia, 2019, no. 3, 48–53

[20] C. Jerez-Hanckes, J.-C. Nedelec, Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides, Research report No 2010-07, ETH, Swiss Federal Institute of Technology, Zurich, February 2010, 25 pp. | MR

[21] Yu. A. Eremin, A. G. Sveshnikov, “Influence of Non-Local Effect on the Scattering Properties of NonSpherical Plasmonic Nanoparticles on a Substrate”, Mathematical Models and Computer Simulations, 10:6 (2018), 730–740 | DOI | MR | Zbl

[22] Yu. A. Eremin, A. G. Sveshnikov, “Near Field Formation via Colloid Particles in Problems of Nanoprocessing Silicon Substrates”, Math. Mod. Comp. Simul., 10:1 (2018), 36–44 | DOI | MR | Zbl

[23] http://www.refractiveindex.info

[24] Iu. A. Eremin, A. G. Sveshnikov, “Discrete Sources Method for the Study of Influence Nonlocality on Characteristics of the Plasmonic Nanolaser Resonators”, Comp. Math. Math. Physics, 59:12 (2019), 2164–2172 | MR

[25] E. Eremina, Y. Eremin, T. Wriedt, “Computational Nano-Optic Technology based on Discrete Sources Method (review)”, J. Modern Opt., 58:5-6 (2011), 384–399 | Zbl

[26] Yu. A. Eremin, N. V. Grishina, “Modeling of nanoshells spectra in evanescent wave field via Discrete Sources Method”, J. Quant. Spectrosc. Radiat. Trans., 100 (2006), 122–130 | DOI