Simulation of multicomponent gas flows using double-flux method
Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to numerical simulation of multicomponent gas flows based on extended Euler equations using a modified explicit Godunov-type scheme. A feature of the used algorithm is to take into account strong shock waves and occurrence of pressure oscillations at contact boundaries. This is expressed in using the exact solutions of the corresponding Riemann problem and special double-flux modification of Godunov-flux. Numerical simulation results demonstrate the robustness of present method and good agreement with the one- and two-dimensional test data of other groups and laboratory experiments.
Keywords: multicomponent gas dynamics, double flux method, Godunov method.
@article{MM_2020_32_10_a0,
     author = {V. E. Borisov and Yu. G. Rykov},
     title = {Simulation of multicomponent gas flows using double-flux method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {32},
     number = {10},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2020_32_10_a0/}
}
TY  - JOUR
AU  - V. E. Borisov
AU  - Yu. G. Rykov
TI  - Simulation of multicomponent gas flows using double-flux method
JO  - Matematičeskoe modelirovanie
PY  - 2020
SP  - 3
EP  - 20
VL  - 32
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2020_32_10_a0/
LA  - ru
ID  - MM_2020_32_10_a0
ER  - 
%0 Journal Article
%A V. E. Borisov
%A Yu. G. Rykov
%T Simulation of multicomponent gas flows using double-flux method
%J Matematičeskoe modelirovanie
%D 2020
%P 3-20
%V 32
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2020_32_10_a0/
%G ru
%F MM_2020_32_10_a0
V. E. Borisov; Yu. G. Rykov. Simulation of multicomponent gas flows using double-flux method. Matematičeskoe modelirovanie, Tome 32 (2020) no. 10, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2020_32_10_a0/

[1] A. L. ZHeleznyakova, S. T. Surzhikov, Na puti k sozdaniyu modeli virtual'nogo GLA. I, IPMekh RAN, M., 2013, 160 pp.

[2] S. T. Surzhikov, Radiacionnaya gazovaya dinamika spuskaemyh kosmicheskih apparatov. Mnogotemperaturnye modeli, IPMekh RAN, M., 2013, 706 pp.

[3] T. Poinsot, D. Veynante, Theoretical, numerical combustion, 3rd Ed., Edwards, 2011

[4] V. T. Zhukov, O. B. Feodoritova, A. P. Duben, N. D. Novikova, “Explicit time integration of the Navier-Stokes equations using the local iteration method”, Keldysh Institute preprints, 2019, 012, 32 pp.

[5] V. T. Zhukov, N. D. Novikova, O. B. Feodoritova, “On one approach to time integration of the system of Navier-Stokes equations”, Comp. Math. Math. Phys., 20:2 (2020), 100–113

[6] S. K. Godunov i dr., CHislennoe reshenie mnogomernyh zadach gazovoj dinamiki, Nauka, M., 1976, 400 pp.

[7] R. Abgrall, “Generalisation of the ROE Scheme for the Computation of Mixture of Perfect Gases”, Rech. Aerosp., 1988, 6 | Zbl

[8] I. E. Ivanov, I. A. Kryukov, “CHislennoe modelirovanie techenij mnogokomponentnogo gaza s sil'nymi razryvami svojstv sredy”, Matem. modelirovanie, 19:12 (2007), 89–100 | Zbl

[9] R. Abgrall, “How to prevent oscillations in multicomponent flow calculations: A quasi conservative approach”, J. Comp. Phys., 125 (1996), 150–160 | MR | Zbl

[10] G. Billet, R. Abgrall, “An Adaptive Shock-Capturing Algorithm for Solving Unsteady Reactive Flows”, Computers Fluids, 32 (2003), 1473–1495 | Zbl

[11] V. E. Borisov, Yu. G. Rykov, “An exact Riemann solver in the algorithms for multicomponent gas dynamics”, Keldysh Institute preprints, 2018, 096, 28 pp.

[12] V. E. Borisov, Yu. G. Rykov, “Modified Godunov method for multicomponent flow simulation”, J. Phys.: Conf. Ser., 1250 (2019), 012006

[13] M. W. Chase, Jr., “NIST-JANAF thermochemical tables, fourth edition”, J. Phys. Chem. Ref. Data, Monogr., 1998, no. 9

[14] A. G. Kulikovskij, N. V. Pogorelov, A. Yu. Semenov, Matematicheskie voprosy chislennogo resheniya giperbolicheskih sistem uravnenij, Fizmatlit, M., 2001, 608 pp. | MR

[15] R. Abgrall, S. Karni, “Computations of compressible multifluids”, J. Comp. Phys., 169 (2001), 594–623 | DOI | MR | Zbl

[16] Y. V. Tunik, “Instability of Contact Surface in Cylindrical Explosive Waves”, Fluid Mech. Open Acc., 4:168 (2017)

[17] V. Yu. Gidaspov, I. E. Ivanov, I. A. Kryukov, I. M. Naboko, V. A. Petuhov, V. Yu. Strel'cov, “Issledovanie processov rasprostraneniya voln goreniya i detonacii v kumuliruyushchem ob'eme”, Matem. modelirovanie, 16:6 (2004), 118–122 | Zbl

[18] R. Saurel, R. Abgrall, “A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows”, J. of Computational Physics, 150 (1999), 425–467 | MR | Zbl

[19] P. C. Ma, Yu Lv, M. Ihme, “An entropy-stable hybrid scheme for simulations of transcritical real-fluid flows”, J. of Computational Physics, 340 (2017), 330–357 | MR | Zbl

[20] I. V. Abalakin, P. A. Bahvalov, A. I. Gorobec, A. P. Duben', T. K. Kozubskaya, “Parallel'nyj programmnyj kompleks NOISEtte dlya krupnomasshtabnyh raschetov zadach aerodinamiki i aeroakustiki”, Vychisl. metody i programmir., 13 (2012), 110–125

[21] G. Chen, H. Tang, P. Zhang, “Second-Order Accurate Godunov Scheme for Multicompo-nent Flows on Moving Triangular Meshes”, J. Sci. Comp., 34 (2008), 64–86 | MR | Zbl

[22] J. Quirk, S. Karni, “On the dynamics of a shock-bubble interaction”, J. of Fluid Mechanics, 318 (1996), 129–163 | DOI | Zbl

[23] Y. S. Lian, K. Xu, “A Gas-Kinetic Scheme for Multimaterial Flows and Its Application in Chemical Reactions”, J. of Computational Physics, 163:2 (2000), 349–375 | DOI | MR | Zbl

[24] R. Loubère, P. H. Maire, M. Shashkov, J. Breil, S. Galera, “ReALE”, J. Comp. Phys., 229:12 (2010), 4724–4761 | DOI | MR | Zbl

[25] Yu. V. YAnilkin, Yu. A. Bondarenko i dr., Testy dlya gidrokodov, modeliruyushchih udarno-volnovye techeniya v mnogokomponentnyh sredah, v. 1, RFYAC-VNIIEF, Sarov, 2017, 68 pp.

[26] J. F. Haas, B. Sturtevant, “Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities”, J. Fluid Mech., 181 (1987), 41–76