Difference scheme with a symmetry analyzer for equations of gas dynamics
Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 45-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper proposes a symmetry analyzer as an element of the computational algorithm for the numerical integration of two-dimensional equations of ideal gas dynamics. A symmetry analyzer is an algorithm that allows using grid data to give preference to one or another (in the present work, Cartesian or polar) components of a vector field for its reconstruction on the cell interfaces of a computational grid and subsequent calculation of fluxes of conservative variables. A computational algorithm was constructed using a polar-type computational grid and including a symmetry analyzer. The algorithm is easily transferred to the three-dimensional computational grids of cylindrical type.
Keywords: Godunov type difference scheme, symmetry analyzer.
@article{MM_2019_31_7_a2,
     author = {A. V. Koldoba and G. V. Ustyugova},
     title = {Difference scheme with a symmetry analyzer for equations of gas dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {45--57},
     publisher = {mathdoc},
     volume = {31},
     number = {7},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_7_a2/}
}
TY  - JOUR
AU  - A. V. Koldoba
AU  - G. V. Ustyugova
TI  - Difference scheme with a symmetry analyzer for equations of gas dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 45
EP  - 57
VL  - 31
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_7_a2/
LA  - ru
ID  - MM_2019_31_7_a2
ER  - 
%0 Journal Article
%A A. V. Koldoba
%A G. V. Ustyugova
%T Difference scheme with a symmetry analyzer for equations of gas dynamics
%J Matematičeskoe modelirovanie
%D 2019
%P 45-57
%V 31
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_7_a2/
%G ru
%F MM_2019_31_7_a2
A. V. Koldoba; G. V. Ustyugova. Difference scheme with a symmetry analyzer for equations of gas dynamics. Matematičeskoe modelirovanie, Tome 31 (2019) no. 7, pp. 45-57. http://geodesic.mathdoc.fr/item/MM_2019_31_7_a2/

[1] V.M. Goloviznin, B.N. Chetverushkin, “New generation algorithms for computational fluid dynamics”, Comput. Math. Math. Phys., 58:8 (2018), 1217–1225 | DOI | MR | Zbl

[2] S.K. Godunov i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.

[3] A.G. Kulikovskii, N.V. Pogorelov, A.Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems, Chapman Hall, Boca Raton, 2001 | MR | Zbl

[4] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin, 1997 | MR | Zbl

[5] P.V. Breslavski, V.I. Mazhukin, “Modelirovanie vzaimodeistviia udarnykh voln na dinamicheski adaptiruiushchikhsia setkakh”, Matematicheskoe modelirovanie, 19:11 (2007), 83–95 | Zbl

[6] V.A. Gasilov, S.V. Diachenko, “Kvazimonotonnaia dvumernaia schema MGD dlia nestrukturirovannykh setok”, Matematicheskoe modelirovanie, 17:12 (2005), 87–109 | Zbl

[7] I.V. Popov, I.V. Fryazinov, “Finite-difference method for computation of the gas dynamics equations with artificial viscosity”, Math. Models Comput. Simul., 1:4 (2009), 493–502 | DOI | MR

[8] M.E. Ladonkina, O.A. Nekliudova, V.F. Tishkin, “Postroenie limitera dlia razryvnogo metoda Galerkina na osnove usredneniia resheniia”, Matematicheskoe modelirovanie, 30:5 (2018), 99–116 | Zbl

[9] O.B. Bocharova, M.G. Lebedev, I.V. Popov, V.V. Sitnik, I.V. Fryazinov, “Shock wave reflection from the axis of symmetry in a nonuniform flow with the formation of a circulatory flow zone”, Math. Models Comput. Simul., 6:2 (2014), 142–154 | DOI | MR | Zbl

[10] A. Harten, P.D. Lax, B. van Leer, “Upstream differencing and Godunov-type schemes for hyperbolic conservation laws”, SIAM Review, 25 (1983), 35–61 | DOI | MR | Zbl

[11] I.B. Petrov, A.I. Lobanov, Lektsii po vychislitelnoi matematike, Internet-Universitet Infomatsionnykh Tekhnologii, M., 2006, 523 pp.