Numerical schemes and hybrid approach for simulation of unsteady turbulent flows
Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 39-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

The investigations presented a brief review of computational approaches to the modeling of turbulent flows. The paper shows that it is necessary to use eddy-resolving approaches and numerical schemes should be stable and correctly describe the evolution of vortices for the correct calculation of large-scale vortex structures. Analysis of stability and numerical diffusion of differencing schemes implemented in OpenFOAM software package has been carried out. Currently the schemes in the OpenFOAM package are not suitable for the correct calculation of the propagation and dissipation of vortices. Based on the obtained results, numerical schemes are selected and their modification has been done. The algorithm for combining URANS and LES approaches for modelling turbulent flows by means of zonal isolation of the computational domain is carried out. Validation of the implemented approach has been performed by a series of calculations of threedimensional flow around a maneuverable aircraft considering airbrake deflection. The structures of flow field around the aircraft and its aerodynamic characteristics are obtained. A comparison with the experimental data has been done.
Keywords: OpenFOAM software package, unsteady vortex flows, eddy-resolving approaches, differencing schemes, URANS and LES approaches, airbrake, buffeting, lateral loads.
Mots-clés : tail fin
@article{MM_2019_31_5_a2,
     author = {A. S. Epikhin},
     title = {Numerical schemes and hybrid approach for simulation of unsteady turbulent flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {39--55},
     publisher = {mathdoc},
     volume = {31},
     number = {5},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_5_a2/}
}
TY  - JOUR
AU  - A. S. Epikhin
TI  - Numerical schemes and hybrid approach for simulation of unsteady turbulent flows
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 39
EP  - 55
VL  - 31
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_5_a2/
LA  - ru
ID  - MM_2019_31_5_a2
ER  - 
%0 Journal Article
%A A. S. Epikhin
%T Numerical schemes and hybrid approach for simulation of unsteady turbulent flows
%J Matematičeskoe modelirovanie
%D 2019
%P 39-55
%V 31
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_5_a2/
%G ru
%F MM_2019_31_5_a2
A. S. Epikhin. Numerical schemes and hybrid approach for simulation of unsteady turbulent flows. Matematičeskoe modelirovanie, Tome 31 (2019) no. 5, pp. 39-55. http://geodesic.mathdoc.fr/item/MM_2019_31_5_a2/

[1] Garifullin M. F., Bafting, Fizmatlit, M., 2010, 216 pp.

[2] Breitsamter S., Schmid A., “Airbrake-induced fin-buffet loads on fighter aircraft”, Journal of Aircraft, 45:5 (2008), 1619–1630 | DOI

[3] Volkov K. N., Emel'yanov V. N., Modelirovanie krupnyh vihrej v raschetah turbulentnyh techenij, Fizmatlit, M., 2008, 368 pp.

[4] Frohlich J., Von Terzi D., “Hybrid LES/RANS Methods for the Simulation of Turbulent Flows”, Progress in Aerospace Sciences, 44:5 (2008), 349–377 | DOI

[5] Kozelkov A. S. i dr., “Modelirovaniye turbulentnykh techeniy vyazkoy neszhimayemoy zhidkosti na nestrukturno-turisticheskikh setkakh s ispol'zovaniyem modeley izsoyedinennykh vikhrey”, Matematicheskoe modelirovanie, 26:8 (2014), 81–96

[6] Jasak H., Weller H. G., Gosman A. D., “High resolution NVD differencing scheme for arbitrarily unstructured meshes”, International journal for numerical methods in fluids, 31 (1999), 431–449 | 3.0.CO;2-T class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[7] Comte-Bellot G., Corrsin S., “Simple Eulerian time correlation of full- and narrowband velocity signals in grid-generated «isotropic» turbulence”, Journal of Fluid Mechanics, 48 (1971), 273–337 | DOI

[8] Epikhin A. S., Kalugin V. T., “Metody snizheniya i raschet nestacionarnyh aehrodinamicheskih nagruzok pri kilevom baftinge manevrennogo samoleta”, Matematicheskoe modelirovanie, 29:10 (2017), 35–44 | Zbl

[9] Spalart P. R., Young-Person's guide to detached-eddy simulation grids, Tech. Rep. NASA/CR-2001-211032, NASA (Langley Research Center), 2001

[10] Spalart P. R., Strelets M. Kh., Garbaruk A. V., “Grid design and the fate of eddies in external flows”, Proc. of Workshop on Quality and Reliability of Large-Eddy Simulations II (September 9–11, Pisa, 2009)

[11] Xiao X., Edwards J. R., Hassan H. A., “Blending Functions in Hybrid Large-Eddy/Reynolds-Averaged Navier-Stokes Simulations”, AIAA Journal, 42:12 (2004), 2508–2515 | DOI

[12] V.A. Podobedov, K.F. Popovich (red.), Samolet Yak-130UBS. Aehrodinamika i letnye harakteristiki, Mashinostroenie, M., 2015, 348 pp. | Zbl