CABARET difference scheme with improved dispersion properties
Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 83-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Difference scheme for the advection transport equation has been constructed as the linear combination of "cabaret" scheme and the scheme with the central differences. The research of stability and dispersion properties of the scheme is conducted. It is shown that the constructed scheme has the best dispersion properties for high harmonicas in case of small numbers of Courant in comparison with the known scheme of "cabaret" for advection transport equation. Comparison of errors of this scheme and two-parameter difference scheme of the third order of accuracy on the basis of numerical experiments on sets of test tasks used earlier is carried out. It has been showed, that developed scheme has smaller errors in grid space $L_1$ in comparison of mentioned above scheme. Additionally the developed scheme uses more compact set of nodes (when calculating $i$-go of knot values of the hubs $i-1$, $i$, $i+1$ are used), and requires smaller number of arithmetic operations.
Mots-clés : advection transport problem, “cabaret” scheme
Keywords: dispersion of schemes, accuracy.
@article{MM_2019_31_3_a5,
     author = {A. I. Sukhinov and A. E. Chistyakov},
     title = {CABARET difference scheme with improved dispersion properties},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--96},
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_3_a5/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
TI  - CABARET difference scheme with improved dispersion properties
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 83
EP  - 96
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_3_a5/
LA  - ru
ID  - MM_2019_31_3_a5
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%T CABARET difference scheme with improved dispersion properties
%J Matematičeskoe modelirovanie
%D 2019
%P 83-96
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_3_a5/
%G ru
%F MM_2019_31_3_a5
A. I. Sukhinov; A. E. Chistyakov. CABARET difference scheme with improved dispersion properties. Matematičeskoe modelirovanie, Tome 31 (2019) no. 3, pp. 83-96. http://geodesic.mathdoc.fr/item/MM_2019_31_3_a5/

[1] A.I. Sukhinov, Iu.V. Belova, A.E. Chistiakov, “Reshenie zadachi perenosa veshchestv pri bolshikh chislakh Pekle”, Vych. metody i programmirovanie, 18:4 (2017), 371–380

[2] V.A. Gushchin, “Family of quasi-monotonic finite-difference schemes of the second-order of approximation”, Math. Models and Comp. Simulations, 8:5 (2016), 487–496 | DOI | MR

[3] O.M. Belotserkovskii, V.A. Gushchin, V.N. Kon'shin, “The splitting method for investigating flows of a stratified liquid with a free surface”, USSR Computational Mathematics and Mathematical Physics, 27:2 (1987), 181–191 | DOI | MR | Zbl

[4] A.A. Samarskiy, P.N. Vabishchevich, Numerical methods for solving convection-diffusion problems, Editorial URSS, M., 1999

[5] V.M. Goloviznin, A.A. Samarskii, “Raznostnaia approksimatsiia konvektivnogo perenosa s prostranstvennym rasshchepleniem vremennoi proizvodnoi”, Matemat. modelirovanie, 10:1 (1998), 86–100

[6] M.E. Ladonkina, O.A. Neklyudova, V.F. Tishkin, “Application of the RKDG method for gas dynamics problems”, Math. Models and Comp. Simulations, 6:4 (2014), 397–407 | DOI | MR

[7] A.A. Samarskii, “On the regularization of difference schemes”, U.S.S.R. Comput. Math. Math. Phys., 7:1 (1967), 62–93

[8] A.A. Samarskii, “Classes of stable schemes”, U.S.S.R. Comp. Math. Math. Phys., 7:5 (1967), 171–223 | DOI | MR

[9] R.P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, U.S.S.R. Comp. Math. Math. Phys., 2:6 (1963), 1355–1365 | DOI | MR | Zbl

[10] A.I. Sukhinov, A.E. Chistakov, M.V. Iakobovskii, “Accuracy of the Numerical Solution of the Equations of Diffusion-Convection Using the Difference Schemes of Second and Fourth Order Approximation Error”, Vestn. YuUrGU. Ser. Vych. Matem. Inform., 5:1 (2016), 47–62

[11] A.I. Sukhinov, A.E. Chistyakov, A.V. Shishenya, E.F. Timofeeva, “Mathematical model for calculating coastal wave processes”, Math. Mod. Comp. Simul., 5:5 (2013), 122–129 | DOI | MR