Numerical modelling of dynamics of cylindrical turbulent patch in longitudinal shear flow
Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 112-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on modified two-equation model of turbulence the numerical model of dynamics of cylindrical localized zone of turbulent mixing in a longitudinal uniform shear flow of homogeneous fluid has been constructed. The results of numerical experiments demonstrate a significant turbulent energy generation caused by the effect of shear flow. The question of similarity of the flow with respect to the shear Froude number has been under consideration. The results of numerical experiments show the similarity of flow for large values of this parameter which correspond to small values of velocity gradients of shear flow.
Keywords: mathematical model of turbulent patch in a shear flow, Rodi’s algebraic Reynolds stresses model of turbulence, numerical modeling.
@article{MM_2019_31_2_a7,
     author = {A. V. Fomina and G. G. Chernykh},
     title = {Numerical modelling of dynamics of cylindrical turbulent patch in longitudinal shear flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {112--128},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a7/}
}
TY  - JOUR
AU  - A. V. Fomina
AU  - G. G. Chernykh
TI  - Numerical modelling of dynamics of cylindrical turbulent patch in longitudinal shear flow
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 112
EP  - 128
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a7/
LA  - ru
ID  - MM_2019_31_2_a7
ER  - 
%0 Journal Article
%A A. V. Fomina
%A G. G. Chernykh
%T Numerical modelling of dynamics of cylindrical turbulent patch in longitudinal shear flow
%J Matematičeskoe modelirovanie
%D 2019
%P 112-128
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_2_a7/
%G ru
%F MM_2019_31_2_a7
A. V. Fomina; G. G. Chernykh. Numerical modelling of dynamics of cylindrical turbulent patch in longitudinal shear flow. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 112-128. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a7/

[1] Monin A. S., Yaglom A. M., Statistical fluid mechanics, v. 1, Mechanics of turbulence, Dover Books on Physics, 2007, 784 pp. | MR

[2] Schooley A. H., “Wake collapse in a stratified fluid”, Science, 157:3787 (1967), 421–423 | DOI

[3] Vlasov Yu. N., Nekrasov V. N., Trokhan A. M., Chashechkin Yu. D., “Development of turbulent mixing in a fluid”, J. of Applied Mechanics and Technical Physics, 14:2 (1973), 222–225 | DOI

[4] Vasiliev O. F., Kuznetsov B. G., Lytkin Yu. M., Chernykh G. G., “Development of the region of a turbulized liquid in a stratified medium”, Fluid Dynamics, 9:3 (1974), 368–373 | DOI

[5] Trokhan A. M., Chashechkin Yu. D., “Generation of internal waves in stratified fluid by an impulse hydrodynamic line source (two-dimensional problem)”, Theory of diffraction and propagation of waves, Abstracts of the 7 All-Union Symp. On the Diffraction and Propagation of Waves, v. 3, USSR Acad. Sci., M., 1977, 186–189

[6] Lytkin Yu. M., Chernykh G. G., “Similarity of the flow with respect to the density Froude number and energy balance at the evolution of the turbulent mixing zone in a stratified medium”, A Collection of Scientific Works, Mathematical Problems of Continuum Mechanics, 47, Inst. Hydrodynamics of the USSR Acad. Sci., Novosibirsk, 1980, 70–89

[7] Fernando H. J. S., “The grouth of a turbulent patch in stratified fluid”, J. Fluid Mech., 190 (1988), 55–70 | DOI

[8] Tolstykh A. I., Compact difference schemes and their applications to fluid dynamics problems, Nauka, M., 1990, 230 pp.

[9] De Silva I. P. D., Fernando H. J. S., “Experiments on collapsing turbulent regions in stratified fluids”, J. Fluid Mech., 358 (1998), 29–60 | DOI

[10] Chashechkin Yu. D., Chernykh G. G., Voropayeva O. F., “The propagation of a Passive Admixture from a Local Instantaneous Source in a Turbulent Mixing Zone”, International Journal of Computational Fluid Dynamics, 19:7 (2005), 517–529 | DOI | Zbl

[11] Chernykh G. G., Voropayeva O. F., “Numerical modeling of momentumless turbulent wake dynamics in a linearly stratified medium”, Comp. and Fluids, 28:3 (1999), 281–306 | DOI | Zbl

[12] Pal Amikesh, De Stadler Matthew B., Sarkar Sutanu, “The spatial evolution of fluctuations in a self-propelled wake compared to a patch of turbulence”, Physics of Fluids, 25 (2013), 095106, 20 pp. | DOI

[13] Jones M. C., Paterson E. G., “Influence of Propulsation Type on the Stratified Near Wake of an Axisymmetric Self-Propelled Body”, Journal of Marine Science and Engineering, 6 (2018), 46 | DOI

[14] Fernando H. J. S., “Turbulent patches in a stratified shear flow”, Physics of Fluids, 15:10 (2003), 3164–3169 | DOI

[15] Yakovenko S. N.. Thomas T. G., Castro I. P., “A turbulent patch arising from a breaking internal wave”, J. Fluid Mech., 677 (2011), 103–133 | DOI | MR | Zbl

[16] Chernykh G. G., Voropaeva O. F., “Dynamics of a momentumless turbulent wake in a shear flow”, Journal of Engineering Thermophysics, 24:1 (2015), 12–21 | DOI

[17] Voropaeva O. F., Chernykh G. G., “The dynamics of local zones of turbulized fluid under the background disturbances of hydrophysical fields”, Fundamentalnaya i prikladnaya gidrofizika, 8:4 (2015), 12–17 | Zbl

[18] Voropaeva O. F., Chernykh G. G., “Dynamics of momentumless turbulent wake in a shear flow of a linearly stratified medium”, Thermophysics and Aeromechanics, 23:1 (2016), 59–68 | DOI | MR | Zbl

[19] Gibson M. M., Launder B. E., “On the calculation of horizontal turbulent free shear flows under gravitational influence”, J. Heat Transfer. Trans. ASME, 98C (1976), 81–87 | DOI

[20] Rodi W., Turbulence models and their application in hydraulics, A state of the art review, University of Karlsruhe, 1980, 104 pp.

[21] Lin J. T., Pao Y. H., “Wakes in stratified fluids”, Annu. Rev. Fluid Mech., 11 (1979), 317–338 | DOI

[22] Hassid S., “Collapse of turbulent wakes in stable stratified media”, Journal of Hydronautics, 14:1 (1980), 25–32 | DOI

[23] Tikhonov A. N., Samarskii A. A., Equations of mathematical physics, Nauka, M., 1972

[24] Kaptsov O. V., Fomina A. V., Chernykh G. G., Shmidt A. V., “Avtomodelnoe vyrozhdenie bezympulsnogo turbulentnogo sleda v passivno stratifitsirovannoi srede”, Matematicheskoe modelirovanie, 27:1 (2015), 84–98

[25] Fedorova N. N., Chernykh G. G., “O chislennom modelirovanii bezympulsnogo turbulentnogo sleda za sferoi”, Modelirovanie v mekhanike, 6(23):1 (1992), 129–149

[26] Fedorova N. N., Chernykh G. G., “O chislennom modelirovanii ploskikh turbulentnykh sledov”, Matematicheskoe modelirovanie, 6:10 (1994), 24–34

[27] Chernykh G. G., Fomina A. V., Moshkin N. P., “Numerical Simulation of Dynamics of Turbulent Wakes behind Towed Bodies in Linearly Stratified Media”, Journal of Engineering Thermophysics, 18:4 (2009), 279–305 | DOI | MR