Composed kinetic-hydrodynamic model of polyatomic gas flow
Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 18-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model of the flow of a polyatomic gas containing a combination of the Navier–Stokes–Fourier model (NSF) and the model kinetic equation of polyatomic gases is presented. At the heart of the composed components is a unified physical model, as a result of which the NSF model is a strict first approximation of the model kinetic equation. The model allows calculations of flow fields in a wide range of Knudsen numbers (Kn), as well as fields containing regions of high dynamic nonequilibrium. The boundary conditions on a solid surface are set at the kinetic level, which allows, in particular, to formulate the boundary conditions on the surfaces absorbing or emitting gas. The composed model was tested. The example of the problem of the shock wave profile shows that up to Mach numbers M$\approx$2 the combined model gives smooth solutions even in those cases where the sewing point is in a high gradient region. For the Couette flow, smooth solutions are obtained at M=5, Kn=0.2.
Keywords: polyatomic gases, Navier–Stokes–Fourier model, model kinetic equation, composed model, dynamic nonequilibrium
Mots-clés : sorption surfaces.
@article{MM_2019_31_2_a1,
     author = {Ju. A. Nikitchenko and S. A. Popov and A. V. Tikhonovets},
     title = {Composed kinetic-hydrodynamic model of polyatomic gas flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {18--32},
     publisher = {mathdoc},
     volume = {31},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/}
}
TY  - JOUR
AU  - Ju. A. Nikitchenko
AU  - S. A. Popov
AU  - A. V. Tikhonovets
TI  - Composed kinetic-hydrodynamic model of polyatomic gas flow
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 18
EP  - 32
VL  - 31
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/
LA  - ru
ID  - MM_2019_31_2_a1
ER  - 
%0 Journal Article
%A Ju. A. Nikitchenko
%A S. A. Popov
%A A. V. Tikhonovets
%T Composed kinetic-hydrodynamic model of polyatomic gas flow
%J Matematičeskoe modelirovanie
%D 2019
%P 18-32
%V 31
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/
%G ru
%F MM_2019_31_2_a1
Ju. A. Nikitchenko; S. A. Popov; A. V. Tikhonovets. Composed kinetic-hydrodynamic model of polyatomic gas flow. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/

[1] P. Degond, S. Jin, L. Mieussens, “A smooth transition model between kinetic and hydrodynamic equations”, Journal of Computational Physics, 209 (2005), 665–694 | DOI | MR | Zbl

[2] I.V. Egorov, A.I. Erofeev, “Continuum and kinetic approaches to the simulation of the hypersonic flow past a flat plate”, Fluid Dynamics, 32:1, January (1997), 112–122 | DOI | MR | Zbl

[3] G. Abbate, C.R. Kleijn, B.J. Thijsse, “Hybrid continuum/molecular simulations of transient gas flows with rarefaction”, AIAA Journal, 47:7 (2009), 1741–1749 | DOI

[4] N. Crouseilles, P. Degond, M. Lemou, “A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equations”, J. Comput. Phys., 199 (2004), 776–808 | DOI | MR | Zbl

[5] N. Crouseilles, P. Degond, M. Lemou, “A hybrid kinetic-fluid model for solving the Vlasov-BGK equations”, Journal of Comput. Phys., 203 (2005), 572–601 | DOI | MR | Zbl

[6] E.M. Shakhov, Metod issledovaniia dvizhenii razrezhennogo gaza, Nauka, M., 1975, 207 pp.

[7] O.I. Rovenskaya, G. Croce, “Numerical simulation of gas flow in rough micro channels: hybrid kinetic-continuum approach versus Navier-Stokes”, Microfluid Nanofluid, 20:81 (2016)

[8] Yu.A. Nikitchenko, “O tselesoobraznosti ucheta koeffitsienta ob'emnoi vyazkosti v zadachakh gazovoi dinamiki”, Izv. RAN, MZhG, 2018, no. 2, 128–138 | DOI | Zbl

[9] Yu.A. Nikitchenko, “Modelnoe kineticheskoe uravnenie mnogoatomnykh gazov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 57:11 (2017), 117–129

[10] Yu.A. Nikitchenko, Modeli neravnovesnykh techenii, Izd-vo MAI, M., 2013, 160 pp.

[11] V.A. Rykov, “Modelnoe kineticheskoe uravnenie dlya gaza s vraschatelnymi stepenyami svobody”, Izv. AN SSSR, MZhG, 1975, no. 6, 107–115

[12] I.N. Larina, V.A. Rykov, “Kineticheskaya model uravneniya Boltsmana dlya dvukhatomnogo gaza s vraschatelnymi stepenyami svobody”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2233–2245 | MR | Zbl

[13] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI

[14] F. Robben, L. Talbot, “Experimental study of the rotational distribution function of nitrogen in a shock wave”, Phys. Fluids, 9:4 (1966), 653–662 | DOI

[15] V.S. Glinkina, Yu.A. Nikitchenko, S.A. Popov, Yu.A. Ryzhov, “O koeffitsiente lobovogo soprotivleniya sorbiruyuschei plastiny, ustanovlennoi poperek potoka”, Izvestiya RAN, MZhG, 2016, no. 6, 77–84 | MR

[16] A.I. Erofeev, “Issledovanie struktury udarnoi volny v azote na osnove traektornykh raschetov vzaimodeistviya molekul”, Izvestiya RAN, MZhG, 2002, no. 6, 134–147 | Zbl

[17] T.G. Elizarova, A.A. Khokhlov, S. Montero, “Numerical simulation of shock wave structure in nitrogen”, Physics of Fluids, 19:6 (2007), 068102 | DOI | Zbl

[18] M.E. Berezko, Yu.A. Nikitchenko, A.V. Tikhonovets, “Sshivanie kineticheskoi i gidrodinamicheskoi modelei na primere techeniya Kuetta”, Trudy MAI, no. 94