Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_2_a1, author = {Ju. A. Nikitchenko and S. A. Popov and A. V. Tikhonovets}, title = {Composed kinetic-hydrodynamic model of polyatomic gas flow}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {18--32}, publisher = {mathdoc}, volume = {31}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/} }
TY - JOUR AU - Ju. A. Nikitchenko AU - S. A. Popov AU - A. V. Tikhonovets TI - Composed kinetic-hydrodynamic model of polyatomic gas flow JO - Matematičeskoe modelirovanie PY - 2019 SP - 18 EP - 32 VL - 31 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/ LA - ru ID - MM_2019_31_2_a1 ER -
Ju. A. Nikitchenko; S. A. Popov; A. V. Tikhonovets. Composed kinetic-hydrodynamic model of polyatomic gas flow. Matematičeskoe modelirovanie, Tome 31 (2019) no. 2, pp. 18-32. http://geodesic.mathdoc.fr/item/MM_2019_31_2_a1/
[1] P. Degond, S. Jin, L. Mieussens, “A smooth transition model between kinetic and hydrodynamic equations”, Journal of Computational Physics, 209 (2005), 665–694 | DOI | MR | Zbl
[2] I.V. Egorov, A.I. Erofeev, “Continuum and kinetic approaches to the simulation of the hypersonic flow past a flat plate”, Fluid Dynamics, 32:1, January (1997), 112–122 | DOI | MR | Zbl
[3] G. Abbate, C.R. Kleijn, B.J. Thijsse, “Hybrid continuum/molecular simulations of transient gas flows with rarefaction”, AIAA Journal, 47:7 (2009), 1741–1749 | DOI
[4] N. Crouseilles, P. Degond, M. Lemou, “A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equations”, J. Comput. Phys., 199 (2004), 776–808 | DOI | MR | Zbl
[5] N. Crouseilles, P. Degond, M. Lemou, “A hybrid kinetic-fluid model for solving the Vlasov-BGK equations”, Journal of Comput. Phys., 203 (2005), 572–601 | DOI | MR | Zbl
[6] E.M. Shakhov, Metod issledovaniia dvizhenii razrezhennogo gaza, Nauka, M., 1975, 207 pp.
[7] O.I. Rovenskaya, G. Croce, “Numerical simulation of gas flow in rough micro channels: hybrid kinetic-continuum approach versus Navier-Stokes”, Microfluid Nanofluid, 20:81 (2016)
[8] Yu.A. Nikitchenko, “O tselesoobraznosti ucheta koeffitsienta ob'emnoi vyazkosti v zadachakh gazovoi dinamiki”, Izv. RAN, MZhG, 2018, no. 2, 128–138 | DOI | Zbl
[9] Yu.A. Nikitchenko, “Modelnoe kineticheskoe uravnenie mnogoatomnykh gazov”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 57:11 (2017), 117–129
[10] Yu.A. Nikitchenko, Modeli neravnovesnykh techenii, Izd-vo MAI, M., 2013, 160 pp.
[11] V.A. Rykov, “Modelnoe kineticheskoe uravnenie dlya gaza s vraschatelnymi stepenyami svobody”, Izv. AN SSSR, MZhG, 1975, no. 6, 107–115
[12] I.N. Larina, V.A. Rykov, “Kineticheskaya model uravneniya Boltsmana dlya dvukhatomnogo gaza s vraschatelnymi stepenyami svobody”, Zh. vychisl. matem. i matem. fiz., 50:12 (2010), 2233–2245 | MR | Zbl
[13] H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid Mech., 74:3 (1976), 497–513 | DOI
[14] F. Robben, L. Talbot, “Experimental study of the rotational distribution function of nitrogen in a shock wave”, Phys. Fluids, 9:4 (1966), 653–662 | DOI
[15] V.S. Glinkina, Yu.A. Nikitchenko, S.A. Popov, Yu.A. Ryzhov, “O koeffitsiente lobovogo soprotivleniya sorbiruyuschei plastiny, ustanovlennoi poperek potoka”, Izvestiya RAN, MZhG, 2016, no. 6, 77–84 | MR
[16] A.I. Erofeev, “Issledovanie struktury udarnoi volny v azote na osnove traektornykh raschetov vzaimodeistviya molekul”, Izvestiya RAN, MZhG, 2002, no. 6, 134–147 | Zbl
[17] T.G. Elizarova, A.A. Khokhlov, S. Montero, “Numerical simulation of shock wave structure in nitrogen”, Physics of Fluids, 19:6 (2007), 068102 | DOI | Zbl
[18] M.E. Berezko, Yu.A. Nikitchenko, A.V. Tikhonovets, “Sshivanie kineticheskoi i gidrodinamicheskoi modelei na primere techeniya Kuetta”, Trudy MAI, no. 94