Incompressible viscous flow simulation using the quasi-hydrodynamic equations system
Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 33-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the problem of modeling viscous incompressible fluid flow using the quasi-hydrodynamic equations system. The use of this approach makes it possible to avoid instability in pressure calculation when using the classical formulation of the Navier–Stokes equations, which is manifested when using cellular numerical schemes. For the numerical implementation of QGD equations, the finite volume method was used with cell-center approximation. In the case of a two-dimensional problem a square mesh was used. A cubic mesh was used in the case of a three-dimensional problem. Two series of calculations were performed for testing in areas of complex geometry for several Reynolds numbers. The results were compared with the ANSYS CFX software package. The comparison showed the high quality of the numerical simulation results using the QGD system of equations.
Keywords: incompressible viscous flow simulation, finite-volume schemes on non-structured grids.
Mots-clés : quasi-hydrodynamic equations system
@article{MM_2019_31_12_a2,
     author = {N. I. Tarasov and S. V. Polyakov and Yu. N. Karamzin and T. A. Kudryashova and V. O. Podryga and D. V. Puzyrkov},
     title = {Incompressible viscous flow simulation using the quasi-hydrodynamic equations system},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--43},
     publisher = {mathdoc},
     volume = {31},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a2/}
}
TY  - JOUR
AU  - N. I. Tarasov
AU  - S. V. Polyakov
AU  - Yu. N. Karamzin
AU  - T. A. Kudryashova
AU  - V. O. Podryga
AU  - D. V. Puzyrkov
TI  - Incompressible viscous flow simulation using the quasi-hydrodynamic equations system
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 33
EP  - 43
VL  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a2/
LA  - ru
ID  - MM_2019_31_12_a2
ER  - 
%0 Journal Article
%A N. I. Tarasov
%A S. V. Polyakov
%A Yu. N. Karamzin
%A T. A. Kudryashova
%A V. O. Podryga
%A D. V. Puzyrkov
%T Incompressible viscous flow simulation using the quasi-hydrodynamic equations system
%J Matematičeskoe modelirovanie
%D 2019
%P 33-43
%V 31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_12_a2/
%G ru
%F MM_2019_31_12_a2
N. I. Tarasov; S. V. Polyakov; Yu. N. Karamzin; T. A. Kudryashova; V. O. Podryga; D. V. Puzyrkov. Incompressible viscous flow simulation using the quasi-hydrodynamic equations system. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 33-43. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a2/

[1] Roache P. J., Computational fluid dynamics, Hermosa Publisher, Albuquerque, 1976, vii+446 pp. | MR

[2] T. A. Kudryashova, S. V. Polyakov, D. V. Puzyrkov, N. I. Tarasov, Matematicheskoe modelirovanie protsessov ochistki vody ot primesei zheleza, RAN, M., 2017, 17 pp.

[3] S. V. Polyakov, Yu. N. Karamzin, T. A. Kudryashova, N. I. Tarasov, “Mathematical modelling of water treatment processes”, Mathematica Montisnigri, XL (2017), 110–126 | MR

[4] S. M. Richardson, A. R. Cornish, “Solution of three-dimensional incompressible flow problems”, J. Fluid Mech., 82:2 (1977), 309–319 | MR | Zbl

[5] S. M. Richardson, Numerical solution of the three-dimensional Navier–Stokes equations, Doctoral dissertation, Department of Chemical Engineering and Chemical Technology, Imperial College of Science and Technology, London, 1976

[6] S. G. Gegg, A dual-potential formulation of the Navier–Stokes equations, Retrospective Theses and Dissertations, No 9040, 1989 https://lib.dr.iastate.edu/rtd/9040

[7] Elizarova T. G., Quasi-Gas Dynamic Equations, Springer-Verlag, Berlin–Heidelberg, 2009, xiv+286 pp. | MR | Zbl

[8] Iu. V. Sheretov, Matematicheskie modeli gidrodinamiki, Uch. posobie, TvGU, Tver, 2004, 80 pp.

[9] Iu. V. Sheretov, Reguliarizovannye uravneniia gidrodinamiki, TvGU, Tver, 2016, 222 pp.

[10] R. Eymard, T. R. Gallouet, R. Herbin, “The finite volume method”, Handbook of Numerical Analysis, 7, North Holland, Amsterdam, 2000, 713–1020 | MR | Zbl

[11] Vychislitelnaia gidrodinamika v ANSYS CFX