Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2019_31_12_a1, author = {B. N. Chetverushkin and A. E. Luzkiy and V. P. Osipov}, title = {Conservation laws and a compact quasi-gasdynamic system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--32}, publisher = {mathdoc}, volume = {31}, number = {12}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a1/} }
TY - JOUR AU - B. N. Chetverushkin AU - A. E. Luzkiy AU - V. P. Osipov TI - Conservation laws and a compact quasi-gasdynamic system JO - Matematičeskoe modelirovanie PY - 2019 SP - 21 EP - 32 VL - 31 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a1/ LA - ru ID - MM_2019_31_12_a1 ER -
B. N. Chetverushkin; A. E. Luzkiy; V. P. Osipov. Conservation laws and a compact quasi-gasdynamic system. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 21-32. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a1/
[1] B. N. Chetverushkin, Kineticheski-soglasovannye skhemy v gazovoi dinamike, izd. MGU, M., 1999, 226 pp.
[2] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008, 298 pp. | MR
[3] S. Chapman, T. G. Cawling, The Mathematical Theory of Non-uniform gases, Univ. Press. Cambridge, Cambridge, 1990, 423 pp. | MR
[4] R. L. Liboff, Introduction to the Theory of Kinetic Equations, Wiley, New York, 1969, 397 pp. | Zbl
[5] V. V. Vedeniapin, Kineticheskie uravneniia Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.
[6] A. A. Zlotnik, B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Comput. Math. Math. Phys., 48:3 (2008), 420–446 | MR | MR | Zbl
[7] B. N. Chetverushkin, “Hyperbolic Quasi-Gasdynamic System”, Mathematical Models and Computer Simulations, 10:5 (2018), 588–600 | MR | MR | Zbl
[8] A. A. Zlotnik, B. N. Chetverushkin, “Entropy balance for the one-dimensional hyperbolic quasi-gasdynamic system of equations”, Dokl. Math., 95:3 (2017), 276–281 | MR | Zbl
[9] A. A. Zlotnik, B. N. Chetverushkin, “On a hyperbolic perturbation of a parabolic initial-boundary valey problem”, Applied Mathem. Letters, 83 (2018), 116–122 | MR | Zbl
[10] B. N. Chetverushkin, N. D'Ascenzo, V. Saveliev, “On an algorithm for solving parabolic and elliptic equations”, Comput. Math. Math. Phys., 55:8 (2015), 1290–1297 | MR | Zbl
[11] B. N. Chetverushkin and M. V. Yakobovskiy, “Numerical Algorithms and Fault Tolerance of Hyperexascale Computer Systems”, Doklady Math., 95:1 (2017), 7–11 | MR | Zbl
[12] B. N. Chetverushkin, A. V. Savel'ev, V. I. Savel'ev, “A quasi-gasdynamic model for the description of magnetogasdynamic phenomena”, Comput. Math. Math. Phys., 58:8 (2018), 1384–1394 | MR | Zbl
[13] A. E. Lutskii, B. N. Chetverushkin, “Compact Version of the Quasi-Gasdynamic System for Modeling a Viscous Compressible Gas”, Diff. Equations, 55:4 (2019), 575–580 | MR | Zbl
[14] T. G. Elizarova, “Time averaging as an approximate technique for constructing quasi-gasdynamic and quasi-hydrodynamic equations”, Comp. Math. and Math. Physics, 51:11 (2011), 1973–1982 | MR | Zbl
[15] B. N. Chetverushkin, N. D'Ascenzo, V. Saveliev, “Kinetically consistent mag-netogasdynamics equations and their use in supercomputer computations”, Doklady Mathematics, 90:1 (2014), 495–498 | MR | Zbl
[16] A.V. Gulin, B.N. Chetverushkin, “Explicit schemes and numerical simulation using ultrahigh-performance computer systems”, Dokl. Math., 86:2 (2012), 681–683 | MR | Zbl
[17] Schlichting H., Boundary-Layer Theory, 7th Edition, McGraw-Hill, Inc., New York, USA, 1979, 419 pp. | MR | Zbl
[18] A. V. Lukshin, L. V. Iarchuk, “O metode dekompozitsii dlia uravneniia Boltsmana”, Diff. uravneniia, 34:7 (1998), 958–964 | MR | Zbl