Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics
Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this study the method is presented for coupled 1D-3D modeling of computational fluid dynamics problems. The method is based on the simultaneous calculation of threedimensional and one-dimensional areas and the organization of communication between the two parts of the task by transferring boundary conditions. The domain in the threedimensional approximation is modeled based on the solution of the full Navier–Stokes equations. The calculation of one-dimensional areas is based on the use of basic conservation laws and empirical characteristics of elements. The correctness of the proposed solutions is checked on several problems. For all tasks, the obtained results are compared with available analytical solutions or experimental data.
Keywords: one-dimensional model, three-dimensional model, numerical simulation, Navier–Stokes equations, conservation laws, hydraulic calculation, FlowDesigner program, LOGOS software package.
@article{MM_2019_31_12_a0,
     author = {A. V. Yalozo and A. S. Kozelkov and A. A. Kurkin and V. V. Kurulin and I. L. Materova and D. A. Utkin},
     title = {Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {31},
     number = {12},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_12_a0/}
}
TY  - JOUR
AU  - A. V. Yalozo
AU  - A. S. Kozelkov
AU  - A. A. Kurkin
AU  - V. V. Kurulin
AU  - I. L. Materova
AU  - D. A. Utkin
TI  - Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 3
EP  - 20
VL  - 31
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_12_a0/
LA  - ru
ID  - MM_2019_31_12_a0
ER  - 
%0 Journal Article
%A A. V. Yalozo
%A A. S. Kozelkov
%A A. A. Kurkin
%A V. V. Kurulin
%A I. L. Materova
%A D. A. Utkin
%T Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics
%J Matematičeskoe modelirovanie
%D 2019
%P 3-20
%V 31
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_12_a0/
%G ru
%F MM_2019_31_12_a0
A. V. Yalozo; A. S. Kozelkov; A. A. Kurkin; V. V. Kurulin; I. L. Materova; D. A. Utkin. Methods of related simulation of one-dimensional and three-dimensional problems of computational fluid dynamics. Matematičeskoe modelirovanie, Tome 31 (2019) no. 12, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2019_31_12_a0/

[1] C. Fletcher, Computational Techniques for Fluid Dynamics. 1. Fundamental and General Techniques, Springer-Verlag, Berlin, 1991, 494 pp. | MR | Zbl

[2] K. V. Volkov, IU. N. Deriugin, A. S. Kozelkov, V. N. Emelianov, I. V. Teterina, Raznostnye skhemy v zadachakh gazovoi dinamiki na nestrukturirovannykh setkakh, Fizmatlit, M., 2014, 416 pp.

[3] A. S. Kozelkov, D. P. Meleshkina, A. A. Kurkin, N. V. Tarasova, S. V. Lashkin, V. V. Kurulin, “Polnostiu neiavny metod resheniia uravnenii Navie-Stoksa dlia rascheta mnogofaznykh techenii so svobodnoi poverkhnostiu”, Vychislitelnye tekhnologii, 21:5 (2016), 54–76 | Zbl

[4] A. S. Kozelkov, V. V. Kurulin, S. V. Lashkin, R. M. Shagaliev, A. V. Yalozo, “Investigation of supercomputer capabilities for the scalable numerical simulation of computational fluid dynamics problems in industrial applications”, Computational Mathematics and Mathematical Physics, 56:8 (2016), 1506–1516 | MR | Zbl

[5] K. V. Volkov, Iu. N. Deriugin, V. N. Emelianov, A. G. Karpenko, A. S. Kozelkov, I. V. Teterina, Metody uskoreniia gazodinamicheskikh raschetov na nestrukturirovannykh setkakh, Fizmatlit, M., 2013, 536 pp.

[6] A. P. Merenkov, V. Ia. Khasilev, Teoriia gidravlicheskikh tsepei, Nauka, M., 1985, 279 pp.

[7] I. E. Idelchik, Spravochnik po gidravlicheskim soprotivleniiam, Mashinostroenie, M., 1992, 672 pp.

[8] L. Formaggia, J. F. Gerbeau, F. Nobile, A. Quarteroni, “On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels”, Comp. Methods Appl. Mech. Engrg., 191 (2001), 561–582 | MR | Zbl

[9] P. Lu, Q. Gao, Y. Wang, “The simulation methods based on 1D/3D collaborative computing for the vehicle integrated thermal management”, Applied Thermal Engineering, 104 (2016), 42–53

[10] S. C. Pang, M. A. Kalam, H. H. Masjuki, M. A. Hazrat, “A review on air flow and coolant flow circuit in vehicles' cooling system”, International Journal of Heat and Mass Transfer, 55 (2012), 6295–6306

[11] T. K. Dobroserdova, M. A. Olshanskii, “A finite element solver and energy stable coupling for 3D and 1D fluid models”, Comp. Methods Appl. Mech. Engrg., 259 (2013), 166–176 | MR | Zbl

[12] W. Peng, Z. Yun, Z. Zhengping, Q. Lei, Z. Zhixiang, “A novel multi-fidelity coupled simulation method for flow systems”, Chinese Journal of Aeronautics, 26:4 (2013), 868–875

[13] L. D. Landau, E. M. Lifshitz, Fluid mechanics, Pergamon Press, N.Y., 1987, 533 pp. | MR | MR | Zbl

[14] J. H. Ferziger, M. Peric, Computational Method for Fluid Dynamics, Springer-Verlag, N.Y., 2002, 310 pp. | MR

[15] S. V. Lashkin, A. S. Kozelkov, D. P. Meleshkina, A. V. Ialozo, N. V. Tarasova, “Modelirovanie techenii viazkoi neszhimaemoi zhidkosti razdelennym i sovmeshchennym algoritmom tipa SIMPLE”, Matematicheskoe modelirovanie, 28:6 (2016), 64–76 | MR | Zbl

[16] A. S. Kozelkov, “The Numerical Technique for the Landslide Tsunami Simulations Based on Navier-Stokes Equations”, Journal of Applied Mechanics and Technical Physics, 58:7 (2017), 1192–1210 | MR | MR

[17] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, E. S. Tyatyushkina, V. V. Kurulin, N. V. Tarasova, “Landslide-type tsunami modelling based on the Navier-Stokes Equations”, Science of Tsunami Hazards, 35:3 (2016), 106–144

[18] R. I. Issa, A. D. Gosman, A. P. Watkins, “The Computation of Compressible and Incompressible Recirculating Flows by a Non-iterative Implicit Scheme”, Journal of Computational Physics, 62 (1986), 66–82 | MR | Zbl

[19] A. S. Kozelkov, R. M. Shagaliev, S. M. Dmitriev, A. A. Kurkin, K. N. Volkov, Iu. N. Deriugin, V. N. Emelianov, E. N. Pelinovskii, M. A. Legchanov, Matematicheskie modeli i algoritmy dlia chislennogo modelirovaniia zadach gidrodinamiki i aerodinamiki, uchebnoe posobie, NGTU, N. Novgorod, 2014, 163 pp.

[20] K. N. Volkov, A. S. Kozelkov, S. V. Lashkin, N. V. Tarasova, A. V. Yalozo, “A parallel implementation of the algebraic multigrid method for solving problems in dynamics of viscous incompressible fluid”, Comp. Math. Math. Phys., 57:12 (2017), 2030–2046 | MR | Zbl

[21] A. V. Ialozo, A. S. Kozelkov, D. Iu. Strelets, A. V. Kornev, I. L. Materova, E. A. Levchenko, I. N. Lapenkov, “Matematicheskoe modelirovanie raboty toplivnoi sistemy samoleta”, Obshcherossiiskii nauchno-tekhnicheskii zhurnal “Polet”, 2018, no. 6, 12–24

[22] A. V. Ialozo, A. S. Kozelkov, V. V. Kurukin, I. L. Materova, A. V. Kornev, D. Iu. Strelets, “Modelirovanie system razvetvlennykh truboprovodov”, Matematicheskoe modelirovanie, 30:10 (2018), 123–138

[23] A. S. Kozelkov, A. A. Kurkin, V. V. Kurulin, M. A. Legchanov, E. S. Tyatyushkina, Y. A. Tsibereva, “Investigation of the application of RANS turbulence models to the calculation of nonisothermal low-Prandtl-number flows”, Fluid Dynamics, 2015, no. 4, 501–513 | MR | Zbl

[24] A. S. Kozelkov, O. L. Krutyakova, A. A. Kurkin, V. V. Kurulin, E. S. Tyatyushkina, “Zonal RANS-LES approach based on an algebraic Reynolds stress model”, Fluid Dynamics, 2015, no. 5, 621–628 | MR | Zbl

[25] A. S. Kozelkov, A. A. Kurkin, E. N. Pelinovsky, V. V. Kurulin, E. S. Tyatyushkina, “Numerical modeling of the 2013 meteorite entry in Lake Chebarkul, Russia”, Nat. Hazards Earth Syst. Sci., 17 (2017), 671–683

[26] V. B. Betelin, R. M. Shagaliev, S. V. Aksenov, I. M. Belyakov, Y. N. Deryuguin, A. S. Kozelkov, D. A. Korchazhkin, V. F. Nikitin, A. V. Sarazov, D. K. Zelenskiy, “Mathematical simulation of hydrogen-oxygen combustion in rocket engines using LOGOS code”, Acta Astronautica, 96 (2014), 53–64

[27] V. V. Kurulin, A. S. Kozelkov, M. A. Lokshin, D. Iu. Strelets, A. V. Kornev, V. A. Stasenkov, I. L. Sharipova, S. V. Iatsevich, “Chislennoe issledovanie prichin vozniknoveniia kavitatsionnoi erozii v truboprovode slozhnoi geometricheskoi konfiguratsii”, Sbornik dokladov XI Vserossiiskogo siezda po fundamentalnym problemam teoretucheskoi i prikladnoi mekhaniki (20–24 avgusta 2015, g. Kazan), 2015, 2215–2216

[28] A. V. Ialozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, A. V. Kornev, I. N. Lapenkov, E. A. Levchenko, “Razrabotka inzhenernogo programmnogo obespecheniia v interesakh proektirovaniia toplivnoi sistemy samoleta”, Sbornik materialov Pervoi vserossiiskoi konferentsii s mezhdunarodnym uchastiem “Tsifrovye sredstva proizvodstva inzhenernogo analiza” \date 28–30 noiabria 2017 g., Tula, 2017, 171–182

[29] A. V. Ialozo, I. L. Materova, V. V. Kurulin, A. S. Kozelkov, V. Iu. Gerasimov, I. N. Lapenkov, E. A. Levchenko, “Matematicheskoe modelirovanie raboty toplivnykh system samoletov”, Tezisy dokladov XXI Vserossiiskoi konferentsii i molodezhnoi shkoly-konferentsii “Teoreticheskie osnovy konstruirovaniia chislennykh algoritmov i reshenie zadach matematicheskoi fiziki, posviashchennoi pamiati K. I. Babenko” (5–11 sentiabria 2016 g., Novorossiisk), 2016, 58–59