Two sectors radial gas bearing with maximum load capacity
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 102-116

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational problem for a radial gas sliding bearing with two sectors is considered. The pressure distribution in the gas layer is described by a nonlinear Reynolds equation for arbitrary compressibility numbers. Magnitude of the principal pressure force vector is used as the variational problem functional. A qualitative analysis of the extremum necessary conditions is carried out, and a computational procedure is constructed. It is shown on the basis of complete system of necessary conditions analysis that the profile of each sector is piecewise linear and single-stage, herewith one sector provides only a gas depression, while the another one — only the gas compression.
Mots-clés : gas lubrication, calculus of variations
Keywords: load capacity maximum, arbitrary compressibility numbers.
@article{MM_2019_31_11_a7,
     author = {Y. Y. Boldyrev},
     title = {Two sectors radial gas bearing with maximum load capacity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {102--116},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/}
}
TY  - JOUR
AU  - Y. Y. Boldyrev
TI  - Two sectors radial gas bearing with maximum load capacity
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 102
EP  - 116
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/
LA  - ru
ID  - MM_2019_31_11_a7
ER  - 
%0 Journal Article
%A Y. Y. Boldyrev
%T Two sectors radial gas bearing with maximum load capacity
%J Matematičeskoe modelirovanie
%D 2019
%P 102-116
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/
%G ru
%F MM_2019_31_11_a7
Y. Y. Boldyrev. Two sectors radial gas bearing with maximum load capacity. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 102-116. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/