Two sectors radial gas bearing with maximum load capacity
Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 102-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

The variational problem for a radial gas sliding bearing with two sectors is considered. The pressure distribution in the gas layer is described by a nonlinear Reynolds equation for arbitrary compressibility numbers. Magnitude of the principal pressure force vector is used as the variational problem functional. A qualitative analysis of the extremum necessary conditions is carried out, and a computational procedure is constructed. It is shown on the basis of complete system of necessary conditions analysis that the profile of each sector is piecewise linear and single-stage, herewith one sector provides only a gas depression, while the another one — only the gas compression.
Mots-clés : gas lubrication, calculus of variations
Keywords: load capacity maximum, arbitrary compressibility numbers.
@article{MM_2019_31_11_a7,
     author = {Y. Y. Boldyrev},
     title = {Two sectors radial gas bearing with maximum load capacity},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {102--116},
     publisher = {mathdoc},
     volume = {31},
     number = {11},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/}
}
TY  - JOUR
AU  - Y. Y. Boldyrev
TI  - Two sectors radial gas bearing with maximum load capacity
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 102
EP  - 116
VL  - 31
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/
LA  - ru
ID  - MM_2019_31_11_a7
ER  - 
%0 Journal Article
%A Y. Y. Boldyrev
%T Two sectors radial gas bearing with maximum load capacity
%J Matematičeskoe modelirovanie
%D 2019
%P 102-116
%V 31
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/
%G ru
%F MM_2019_31_11_a7
Y. Y. Boldyrev. Two sectors radial gas bearing with maximum load capacity. Matematičeskoe modelirovanie, Tome 31 (2019) no. 11, pp. 102-116. http://geodesic.mathdoc.fr/item/MM_2019_31_11_a7/

[1] Lord Rayleigh, “Notes on the theory of lubrication”, Phil. Mag., 35:1 (1918), 1–12 | MR

[2] C. J. A. Maday, “The One-Dimensional Optimum Hydrodynamic Gas Slider Bearing”, Trans. ASME. Ser. F. J. Lubr. Technol., 90:1 (1968)

[3] C. J. Maday, “A bounded variable approach to the optimum slider bearing”, Trans. ASME. Ser. F. J. Lubr. Technol., 90:1 (1968), 240–242 | DOI

[4] C. J. Maday, “The Maximum Principle Approach to the Optimum One-Dimensional Journal Bearing”, Transactions of the American Society of Mechanical Engineers, Series F, 92 (1970), 482–489

[5] Iu. Ia. Boldyrev, V. A. Troitskii, “Odna prostranstvennaia variatsionnaia zadacha teorii gazovoi smazki”, Izvestiia AH SSSR MZhG, 1975, no. 5, 34–39 | MR

[6] Iu. Ia. Boldyrev, “Variatsionnaia zadacha dlia radialnogo sektornogo podshipnika, rabotaiushchego v rezhime malykh chisel ”, Prikladnaia matematika, Trudy TPI, 1977, 30–35

[7] Iu. Ia. Boldyrev, M. E. Slesarev, “Odnomernyi radialnyi gazovyi podshipnik s maksimalnoi nesushchei sposobnostiu”, Mashinovedenie, 1987, no. 4, 97–103

[8] V. I. Grabovskii, “Optimalnyi radialnyi gazovyi podshipnik s minimumom momenta soprotivleniia”, Izv. RAN, MZhG, 1999, no. 6, 63–75

[9] V. I. Grabovskii, “Optimalnyi zazor upornogo gazovogo podshipnika s maksimalnoi nesushchei sposobnostiu”, Izv. RAN, MZhG, 2000, no. 4, 68–78

[10] Iu. Ia. Boldyrev, “Zamechanie o periodicheskoi variatsionnoi zadache dlia radialnogo gazovogo podshipnika”, Nauchno-tekhnicheskie vedomosti SPbGPU, 2007, no. 1, 258–262

[11] Iu. Ia. Boldyrev, E. P. Petukhov, “Variatsionnaia zadacha dlia radialnogo gazovogo podshipnika”, Izvestiia RAH MZhG, 50:2 (2015), 16–26 | MR | Zbl

[12] I. E. Sipenkov, A. Iu. Filippov, Iu. Ia. Boldyrev, B. S. i dr. Grigorev, Pretsizionnye gazovye podshipniki, Izd. TsNII «Elektropribor», SPB, 2007, 504 pp.

[13] Iu. Ia. Boldyrev, E. P. Petukhov, “Variatsionnaia zadacha dlia radialnogo gazovogo podshipnika”, Izvestiia RAH MZhG, 50:2 (2015), 16–26 | MR | Zbl

[14] A. Miele (red.), Teoriia optimalnykh aerodinamicheskikh form, Mir, M., 1971, 507 pp.

[15] Iu. Ia. Boldyrev, Variatsionnoe ischislenie i metody optimizatsii, Uchebnoe posobie, Izdatelstvo Politekhnicheskogo universiteta, Sankt-Peterburg, 2016, 240 pp.