Computational experiment in the problem of supersonic flow around a blunt body with tail expansion
Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 117-129.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of direct numerical simulation of supersonic flow around a cylindrical blunt body with tail expansion are presented. The data obtained are compared with the results of laboratory experiments for the Mach numbers 3 and 4 and the angles of attack of 10 and 20 degrees. The results are obtained by using the quasi-gas-dynamic equations.
Keywords: supersonic flows, unstructured spatial grids.
Mots-clés : quasi-gas-dynamic equations
@article{MM_2019_31_10_a9,
     author = {I. A. Shirokov and T. G. Elizarova},
     title = {Computational experiment in the problem of supersonic flow around a blunt body with tail expansion},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {117--129},
     publisher = {mathdoc},
     volume = {31},
     number = {10},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2019_31_10_a9/}
}
TY  - JOUR
AU  - I. A. Shirokov
AU  - T. G. Elizarova
TI  - Computational experiment in the problem of supersonic flow around a blunt body with tail expansion
JO  - Matematičeskoe modelirovanie
PY  - 2019
SP  - 117
EP  - 129
VL  - 31
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2019_31_10_a9/
LA  - ru
ID  - MM_2019_31_10_a9
ER  - 
%0 Journal Article
%A I. A. Shirokov
%A T. G. Elizarova
%T Computational experiment in the problem of supersonic flow around a blunt body with tail expansion
%J Matematičeskoe modelirovanie
%D 2019
%P 117-129
%V 31
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2019_31_10_a9/
%G ru
%F MM_2019_31_10_a9
I. A. Shirokov; T. G. Elizarova. Computational experiment in the problem of supersonic flow around a blunt body with tail expansion. Matematičeskoe modelirovanie, Tome 31 (2019) no. 10, pp. 117-129. http://geodesic.mathdoc.fr/item/MM_2019_31_10_a9/

[1] E. M. Houtman, W. J. Bannink, B. H. Timmerman, Experimental and Computational Study of a Blunt Cylinder-Flare Model in High Supersonic Flow, report LR-796, Delft University of Technology, Delft, 1995

[2] B. N. Chetverushkin, Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barselona, 2008 | MR

[3] T. G. Elizarova, Quasi-Gas Dynamic Equations, Springer, Dordrecht, 2009 | MR | Zbl

[4] Yu. V. Sheretov, Regularized Hydrodynamic Equations, State University, Tver, 2016, 222 pp. (in Russian)

[5] T. G. Elizarova, I. A. Shirokov, Regularized equations and examples of their use in the modeling of gas-dynamic flows, MAKS Press, M., 2017, 136 pp.

[6] I. A. Shirokov, T. G. Elizarova, “Computer simulation of the supersonic flow of a viscous compressible gas around a model body on the basis of the quasi-gas-dynamic algorithm”, Physical-Chemical Kinetics in Gas Dynamics, 18:2 (2017) | MR

[7] T. G. Elizarova, I. A. Shirokov, “Artificial dissipation coefficients in regularized equations of supersonic aerodynamics”, Doklady Mathematics, 98:3 (2018), 648–651 | DOI | Zbl

[8] TetGen: A quality tetrahedral mesh generator, http://tetgen.berlios.de/ | MR

[9] T. A. Kudryashova, S. V. Polyakov, A. A. Sverdlin, “Calculation of gas flow parameters around reentry vehicle”, Math. Models and Comput. Simul., 1:4 (2009), 445–452 | DOI | Zbl

[10] K-100 System, , Keldysh Institute of Applied Mathematics RAS, M. http://www.kiam.ru/MVS/resourses/k100.html

[11] M. V. Kraposhin, E. V. Smirnova, T. G. Elizarova, M. A. Istomina, “Development of a new OpenFOAM solver using regularized gas-dynamic equations”, Computers and Fluids, 166 (2018), 163–175 | DOI | MR | Zbl

[12] V. E. Borisov, A. A. Davydov, A. E. Lutskii, Ia. V. Khankhasaeva, “Chislennoe issledovanie obtekaniia modeli kosmicheskogo apparata”, Preprinty IPM im. M.V. Keldysha, 2017, 130, 19 pp. | DOI