Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_8_a4, author = {A. A. Belov and N. N. Kalitkin}, title = {Solution of the {Fredholm} equation of the first kind by mesh method with {Tikhonov} regularization}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {67--88}, publisher = {mathdoc}, volume = {30}, number = {8}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a4/} }
TY - JOUR AU - A. A. Belov AU - N. N. Kalitkin TI - Solution of the Fredholm equation of the first kind by mesh method with Tikhonov regularization JO - Matematičeskoe modelirovanie PY - 2018 SP - 67 EP - 88 VL - 30 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a4/ LA - ru ID - MM_2018_30_8_a4 ER -
A. A. Belov; N. N. Kalitkin. Solution of the Fredholm equation of the first kind by mesh method with Tikhonov regularization. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 67-88. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a4/
[1] Jun-Gang Wang, Yan Li, Yu-Hong Ran, “Convergence of Chebyshev type regularization method under Morozov discrepancy principle”, Appl. Math. Lett., 74 (2017), 174–180 | DOI | MR | Zbl
[2] Belov A. A., Kalitkin N. N., “Processing of Experimental Curves by Applying a Regularized Double Period Method”, Doklady Math., 94:2 (2016), 539–543 | DOI | MR | Zbl
[3] Belov A. A., Kalitkin N. N., “Regularization of the Double Period Method for Experimental Data Processing”, Comp. Math. and Math. Phys., 57:11 (2017), 1741–1750 | DOI | MR | Zbl | Zbl
[4] Bakushinsky A. B., Smirnova A., “Irregular operator equations by iterative methods with undetermined reverse connection”, J. Inv. Ill-Posed Problems, 18 (2010), 147–165 | MR | Zbl
[5] Bakushinsky A. B., Smirnova A., “Discrepancy principle for generalized GN iterations combined with the reverse connection control”, J. Inv. Ill-Posed Problems, 18 (2010), 421–431 | MR | Zbl
[6] Jian-guo Tang, “An implicit method for linear ill-posed problems with perturbed operators”, Math. Meth. in the Appl. Sci., 29 (2006), 1327–1338 | DOI | MR
[7] Leonov A. S., Reshenie nekorrktno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i deomnstratsii v MATLAB, Librokom, M., 2010
[8] Tikhonov A. N., Goncharskii A. V., Stepanov V. V., Iagola A. G., Chislennye metody resheniia nekorrektnykh zadach, Nauka, M., 1990
[9] Gaponenko Iu. L., “On the degree of decidability and the accuracy of the solution of an ill-posed problem for a fixed level of error”, USSR Comp. Math. and Math. Phys., 24 (1984), 96–101 | DOI | MR | Zbl | Zbl
[10] Gaponenko Yu. L., “The accuracy of the solution of a non-linear ill-posed problem for a finite error level”, USSR Comp. Math. and Math. Phys., 25 (1985), 81–85 | Zbl
[11] Hon Y. C., Wei T., “Numerical computation of an inverse contact problem in elasticity”, J. Inv. Ill-Posed Problems, 14 (2006), 651–664 | DOI | MR | Zbl
[12] Ben Ameur H., Kaltenbacher B., “Regularization of parameter estimation by adaptive discretization using refinement and coarsening indicators”, J. Inv. Ill-Posed Problems, 10 (2002), 561–583 | MR | Zbl
[13] Samarskii A. A., Vabishchevich P. N., “Raznostnye skhemy dlia neustoichevykh zadach”, Mat. Modelirovanie, 2:11 (1990), 89–98
[14] Samarskii A. A., “Regularization of difference schemes”, USSR Comp. Math. and Math. Phys., 7 (1967), 79–120 | DOI | MR
[15] Bakushinskii A. B., Leonov A. S., “Novye aposteriornye otsenki tochnosti dlia priblizhennykh reshenii nereguliarnykh operatornykh uravnenii”, Vych. met. programmirovanie, 15:2 (2014), 359–369
[16] Bakushinsky A. B., Smirnova A., Hui Liu, “A posteriori error analysis for unstable models”, J. Inv. Ill-Posed Problems, 20 (2012), 411–428 | DOI | MR | Zbl
[17] Klibanov M. V., Bakushinsky A. B., Beilina L., “Why a minimizer of the Tikhonov functional is closer to the exact solution than the first guess”, J. Inv. Ill-posed Problems, 19 (2011), 83–105 | DOI | MR | Zbl
[18] Goncharskii A. V., Leonov A. S., Yagola A. G., “A generalized discrepancy principle”, USSR Comp. Math. and Math. Phys., 13 (1973), 25–37 | DOI | MR | Zbl
[19] Richardson L. F., Gaunt J. A., “The deferred approach to the limit”, Phil. Trans. A, 226 (1927), 299–349 | DOI | Zbl
[20] Riaben'kii V. S., Fillipov A. F., Ob ustoichivosti raznostnykh uravnenii, Gosudarstvennoe izd-vo tekhniko-teoretichskoi literatury, 1956
[21] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Halsted, New York, 1977 | MR
[22] Kalitkin N. N., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005
[23] A.A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc., New York–Basel, 2001, 761 pp. | MR | Zbl
[24] Rautian S. G., “Realnye spectralnye pribory”, UFN, 66:3 (1958), 475–517 | DOI