On a computational technique for simulation of scramjet combustor by means of OpenFOAM
Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 32-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

A methodology for numerical simulation of flows in the scramjet combustor provides. The approach is based on the numerical solution of the Navier–Stokes system of the reacting flows of multicomponent fluid mixtures. The dynamics of combustion processes is studied depending on the coefficient of oxidizer excess and the technology is developed for numerical simulations on a multiprocessor supercomputer K-100 by means of OpenFOAM.
Keywords: numerical simulation, multicomponent flows, scramjet combustor, OpenFOAM.
@article{MM_2018_30_8_a2,
     author = {V. T. Zhukov and N. D. Novikova and O. B. Feodoritova},
     title = {On a computational technique for simulation of scramjet combustor by means of {OpenFOAM}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {32--50},
     publisher = {mathdoc},
     volume = {30},
     number = {8},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_8_a2/}
}
TY  - JOUR
AU  - V. T. Zhukov
AU  - N. D. Novikova
AU  - O. B. Feodoritova
TI  - On a computational technique for simulation of scramjet combustor by means of OpenFOAM
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 32
EP  - 50
VL  - 30
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_8_a2/
LA  - ru
ID  - MM_2018_30_8_a2
ER  - 
%0 Journal Article
%A V. T. Zhukov
%A N. D. Novikova
%A O. B. Feodoritova
%T On a computational technique for simulation of scramjet combustor by means of OpenFOAM
%J Matematičeskoe modelirovanie
%D 2018
%P 32-50
%V 30
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_8_a2/
%G ru
%F MM_2018_30_8_a2
V. T. Zhukov; N. D. Novikova; O. B. Feodoritova. On a computational technique for simulation of scramjet combustor by means of OpenFOAM. Matematičeskoe modelirovanie, Tome 30 (2018) no. 8, pp. 32-50. http://geodesic.mathdoc.fr/item/MM_2018_30_8_a2/

[1] O.V. Voloshchenko, S.A. Zosimov, A.A. Nikolaev, “Eksperimentalnoe issledovanie protsessa goreniia zhidkogo uglevodorodnogo topliva v ploskom kanale pri sverkhzvukovoi skorosti potoka na vkhode”, Modeli I metody aerodinamiki, Materialy IiI I Mezhdunarodnykh shkol-seminarov, MNTSMO, M., 2002, 75

[2] E.V. Piotrovich, V.N. Sermanov, V.N. Ostras, O.V. Voloshchenko, S.A. Zosimov, A.F. Chevagin, V.V. Vlasenko, E.A. Meshcheriakov, “Issledovanie problem goreniia zhidkogo uglevodorodnogo topliva v kanalakh”, Modeli i metody aerodinamiki, Materialy I i II Mezhdunarodnykh shkol-seminarov, MNTSMO, M., 2002, 102

[3] V.V. Vlasenko, A.A. Shiriaeva, “Raschety techeniia v modelnoi vysokoskorostnoi kamere sgoraniia s ispolzovaniem razlichnykh modelei khimicheskoi kinetiki”, Gorenie i vzryv, 8:1 (2015), 116–125

[4] S.M. Frolov, A.E. Zangiev, I.V. Semenov, V.V. Vlasenko, O.V. Voloshchenko, A.A. Nikolaev, A.A. Shiriaeva, “Modelirovanie techeniia v vysokoskorostnoi kamere sgoraniia v trekhmernoi i dvumernoi postanovke”, Gorenie i vzryv, 8:1 (2015), 126–135

[5] I.G. Gudich, V.V. Vlasenko, V.T.Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova, “O raschetakh modelnoi vysokoskorostnoi kamery sgoraniia”, Gorenie i vzryv, 9:3 (2016), 57–65 | Zbl

[6] I.G. Gudich, V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova, “Chislennoe modelirovanie vysokoskorostnoi kamery sgoraniia s ispolzovaniem paketa OpenFOAM”, Keldysh Institute preprints, 2016, 010, 32 pp.

[7] http://www.openfoam.com

[8] Gibridnyi vychislitelnyi klaster K-100

[9] T. Poinsot, D. Veynante, Theoretical and numerical combustion, 3rd Edition, Edwards, 2011

[10] F.R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications”, AIAA-Journal, 32:8 (1994), 269–289 | DOI

[11] W. Vieser, T. Esch, F. Menter, Heat transfer predictions using advanced two-equation turbulence models, CFX Validation Report 10/0602, AEA Technology, 2002, 69 pp.

[12] J.O. Hirschfelder, “Heat Conductivity in Polyatomic or Electronically Excited Gases. II”, J. of Chemical Physics, 26:2 (1957), 282–285 | DOI | MR

[13] V. P. Glushko (red.), Termodinamicheskie svoistva individualnykh veshchestv, V 6 tomakh, Nauka, M., 1978–2004

[14] V.Ya. Basevich, S.M. Frolov, “Globalnye kineticheskie mekhanismy dlia modelirovaniia mnogostadiinogo samovosplameneniia uglevodorodov v reagiruiushchikh techeniiakh”, Khimicheskaia fizika, 25:6 (2006), 54–62

[15] F. Moukalled, L. Mangan, M. Darwish, The finite volume method in computational Fluid Dynamics. An Advanced Introduction with OpenFOAM and Matlab, Springer, 2015 | MR

[16] T. Maric, J. Hopken, K. Mooney, The OpenFOAM technology primer, , 2014 www.sourceflux.de/book

[17] V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova, “Issledovanie kartiny techeniia v modelnom trakte dvigatelia vysokoskorostnogo letatelnogo apparata”, Keldysh Institute preprints, 2015, 005, 23 pp.

[18] V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova, “Raschet, analiz i vizualizatsiia techeniia v modelnom trakte dvigatelia vysokoskorostnogo letatelnogo apparata”, Nauchnaia vizualizatsiia, 7:1 (2015), 78–95 | Zbl

[19] I.G. Gudich, V.T. Zhukov, K.V. Manukovskii, N.D. Novikova, Iu.G. Rykov, O.B. Feodoritova, “Chislennoe modelirovanie i vizualizatsiia techenii s goreniem v vysokoskorostnoi kamere sgoraniia”, Nauchnaia vizualizatsiia, 8:4 (2016), 104–127

[20] C.K. Westbrook, F.L. Dryer, “Chemical kinetic modeling of hydrocarbon combustion”, Prog. Energy Combust. Sci., 10:1 (1984), 1–57 | DOI | MR

[21] A.E. Zangiev, V.S. Ivanov, S.N. Medvedev, S.M. Frolov, F.S. Frolov, I.V. Semenov, V.V. Vlasenko, “Vliianie turbulentnosti na razvitie techeniia v vysokoskorostnoi kamere sgoraniia”, Gorenie i vzryv, 9:3 (2016), 66–79

[22] V.V. Vlasenko, O.V. Voloshchenko, A.A. Nikolaev, “Razvitie techeniia v vysokoskorostnoi kamere sgoraniia pri raznykh znacheniiakh koeffitsienta izbytka vozdukha”, Gorenie i vzryv, 9:3 (2016), 47–56