Modelling of interaction of relativistic and nonrelativistic flows on adaptive grids
Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 3-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider some numerical aspects of the mathematical modeling of composite flows (relativistic and non-relativistic) on adaptive computational grids applied to a double system "pulsar–optical star". The pulsar is the source of ultra-relativistic wind of electron-positron plasma and the optical star is the source of the non-relativistic wind. In the domains of relativistic and non-relativistic flows, the plasma dynamics is described by various systems of equations. Moreover, the wind parameters are such that their modeling in a homogeneous way faces significant difficulties. Despite the fact that the distance between the partners of the binary system varies depending on the orbital phase, the flow is a self-similar one and is determined by the dimensionless parameters of the problem. The flow pattern can vary significantly with the variation of these parameters. This fact requires the flexibility of the algorithm for constructing of a grid which is adaptive to the solution. In this work we present some possibilities to use the adaptive grids for modeling of the above mentioned class of composite flows.
Keywords: relativistic MHD, Godunov type difference schemes, adaptive computational grids.
@article{MM_2018_30_6_a0,
     author = {A. V. Koldoba and G. V. Ustyugova and S. V. Bogovalov},
     title = {Modelling of interaction of relativistic and nonrelativistic flows on adaptive grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--20},
     publisher = {mathdoc},
     volume = {30},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_6_a0/}
}
TY  - JOUR
AU  - A. V. Koldoba
AU  - G. V. Ustyugova
AU  - S. V. Bogovalov
TI  - Modelling of interaction of relativistic and nonrelativistic flows on adaptive grids
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 3
EP  - 20
VL  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_6_a0/
LA  - ru
ID  - MM_2018_30_6_a0
ER  - 
%0 Journal Article
%A A. V. Koldoba
%A G. V. Ustyugova
%A S. V. Bogovalov
%T Modelling of interaction of relativistic and nonrelativistic flows on adaptive grids
%J Matematičeskoe modelirovanie
%D 2018
%P 3-20
%V 30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_6_a0/
%G ru
%F MM_2018_30_6_a0
A. V. Koldoba; G. V. Ustyugova; S. V. Bogovalov. Modelling of interaction of relativistic and nonrelativistic flows on adaptive grids. Matematičeskoe modelirovanie, Tome 30 (2018) no. 6, pp. 3-20. http://geodesic.mathdoc.fr/item/MM_2018_30_6_a0/

[1] Johnston S. et al., “PSR 1259-63 — A binary radio pulsar with a Be star companion”, ApJ, Part 2 — Letters, 387 (1992), L37–L41 | DOI

[2] Khangulyan D. et al., “TeV light curve of PSR B1259-63/SS2883”, MNRAS, 380:1 (2006), 320–330 | DOI

[3] Bosch-Ramon V. et al., “Simulations of stellar/pulsar-wind interaction along one full orbit”, A, 544 (2012), A59

[4] Ahoronian F. A., Bogovalov S. V., Chechetkin V. M., Khangulyan D. V., Koldoba A. V., Ustyugova G. V., “Modelling interaction of relativistic and non-relativistic winds in binary system PSR B1259–63/SS2883 — I. Hydrodynamical limit”, MNRAS, 387:1 (2008), 63–72 | DOI

[5] Ahoronian F. A., Bogovalov S. V., Khangulyan D. V., Koldoba A. V., Ustyugova G. V., “Modelling the interaction between relativistic and non-relativistic winds in the binary system PSR B1259-63/SS2883 — II. Impact of the magnetization and anisotropy of the pulsar wind”, MNRAS, 419:4 (2012), 3426–3432 | DOI

[6] Bogovalov S. V., Chechetkin V. M., Koldoba A. V., Ustyugova G. V., “Numerical modeling of the pulsar wind interaction with ISM”, Advances in Space Research, 37:10 (2006), 1975–1978 | DOI

[7] Azarenok B. N., Ivanenko S. A., “Application of Adaptive Grids in Numerical Analysis of Time-Dependent Problems in Gas Dynamics”, Computational Mathematics and Mathematical Physics, 40:3 (2000), 1330–1349 | MR | Zbl

[8] Azarenok B. N., O postroenii podvizhnykh adaptivnykh prostranstvennykh setok, VTs RAN, M., 2007

[9] Breslavskii P. V., Mazhukin V. I., “Dynamically Adapted Grids for Interacting Discontinuous Solutions”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 687–706 | DOI | MR | Zbl

[10] Godunov S. K. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp.

[11] Roe P. L., “Characteristic-Based Schemes for the Euler Equations”, Ann. Rev. Fluid Mech., 18 (1986), 337–365 | DOI | MR | Zbl

[12] Koldoba A. V., Ustyugova G. B., “A Godunov-Type Finite-Difference Scheme for the Equations of Relativistic Magnetohydrodynamics”, Computational Mathematics and Mathematical Physics, 42:10 (2002), 1522–1537 | MR | Zbl

[13] van Putten M. H. P. M., “A Numerical Implementation of MHD in Divergence Form”, JCPh, 105 (1993), 339–353 | MR | Zbl

[14] Komissarov S. S., “A Godunov-type scheme for relativistic magnetohydrodynamics”, MNRAS, 303 (1999), 343–366 | DOI

[15] Del Zanna L., Bucciatini N., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. Hydrodynamics, May 2002, arXiv: astro-ph/0205290

[16] Del Zanna L., Bucciatini N., Londrillo P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics, 29 Oct 2002, arXiv: astro-ph/0210618

[17] Mignone A., Ugliano M., Bodo G., “A five-wave Harten-Lax-van Leer solver for relativistic magnetohydrodynamics”, MNRAS, 393 (2009), 1141–1156 | DOI

[18] Anile A. M., Relativistic Fluids and Magnetofluids, Cambridge Univ. Press, Cambridge, 1989