Non-local effect influence on the scattering properties of non-spherical plasmonic nanoparticles on a substrate
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 121-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

Based on the Discrete Sources Method, a new mathematical model allowing to take into account the Non-locality Effect (NE) in problems of light scattering by plasmon nanoparticles located at a plane substrate has been constructed and realized. The effect of accounting for the NE on the integral scattering characteristics in the spectral domain, near the plasmon resonance (PR), was investigated. It has been shown that taking into account the NE leads to the shift and significant change in the amplitude of the PR.
Keywords: light scattering, plasmon resonance, Non-local Effect, Discrete Sources Method.
Mots-clés : nano-particles on substrate
@article{MM_2018_30_4_a8,
     author = {Yu. A. Eremin and A. G. Sveshnikov},
     title = {Non-local effect influence on the scattering properties of non-spherical plasmonic nanoparticles on a substrate},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {121--138},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a8/}
}
TY  - JOUR
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - Non-local effect influence on the scattering properties of non-spherical plasmonic nanoparticles on a substrate
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 121
EP  - 138
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a8/
LA  - ru
ID  - MM_2018_30_4_a8
ER  - 
%0 Journal Article
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T Non-local effect influence on the scattering properties of non-spherical plasmonic nanoparticles on a substrate
%J Matematičeskoe modelirovanie
%D 2018
%P 121-138
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a8/
%G ru
%F MM_2018_30_4_a8
Yu. A. Eremin; A. G. Sveshnikov. Non-local effect influence on the scattering properties of non-spherical plasmonic nanoparticles on a substrate. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 121-138. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a8/

[1] Maier S. A., Plasmonics: Fundamentals and Applications, Springer, 2007, 223 pp.

[2] Klimov V. V., Nanoplazmonika, Fizmatlit, M., 2009, 480 pp.

[3] Ruppin R., “Optical properties of small metal spheres”, Phys. Rev. B, 11 (1975), 2871–2876 | DOI

[4] García de Abajo F. J., “Nonlocal Effects in the Plasmons of Strongly Interacting Nanoparticles, Dimers, and Waveguides”, J. Phys. Chem. C, 112 (2008), 17983–17987 | DOI

[5] Raza S., Toscano G., Jauho A-P., Wubs M., Mortensen N. A., “Unusual resonances in nanoplasmonic structures due to nonlocal response”, Phys. Rev. B, 84 (2011), 121412(R) | DOI

[6] David C., Garcia de Abajo F. J., “Spatial Nonlocality in the Optical Response of Metal Nanoparticles”, J. Phys. Chem. C, 115 (2011), 19470–19475 | DOI

[7] Wiener A., Antonio I. Fernandez-Dominguez A. I., Horsfield A. P., Pendry J. B., Maier S. A., “Nonlocal Effects in the Nanofocusing Performance of Plasmonic Tips”, Nano Lett., 12 (2012), 3308–3314 | DOI

[8] Mortensen N. A., “Nonlocal formalism for nanoplasmonics: phenomenological and semiclassical considerations”, Phot. Nanostr., 11 (2013), 303–316 | DOI

[9] Toscano G., Straubel J., Kwiatkowski A., Rockstuhl C., Evers F., Xu H., Mortensen N. A., Wubs M., “Resonance shifts and spill-out effects in self-consistent hydrodynamic nanoplasmonics”, Nature Commun., 6 (2015), N7132 | DOI

[10] Raza S., Bozhevolnyi S. I., Wubs M., Mortensen N. A., “Nonlocal optical response in metallic nanostructures. Topical Review”, J. Phys.: Condens. Matter., 27 (2015), 3204–3300

[11] Moradi A., “Plasmon modes of metallic nanowires including quantum nonlocal effects”, Phys. Plasmas, 22 (2015), N032112

[12] Mortensen N. A., Raza S., Wubs M., Søndergaard T., Bozhevolnyi S. I., “A generalized nonlocal optical response theory for plasmonic nanostructures”, Nature Commun., 5 (2014), 3809–3815

[13] Wubs M., Mortensen A., “Nonlocal Response in Plasmonic Nanostructures”, Quantum Plasmonics, eds. S.I. Bozhevolnyi et al., Springer, Switzerland, 2017, 279–302 | DOI

[14] Kahnert M., “Numerical solutions of the macroscopic Maxwell equations for scattering by non-spherical particles: A tutorial review”, J. Quantitat. Spectr. Radiat. Trans., 178 (2016), 22–37 | DOI | MR

[15] Gallinet B., Butet J., Martin O. J. F., “Numerical methods for nanophotonics: standard problems and future challenges (Review)”, Laser Photonics. Rev., 9:6 (2015), 577–603 | DOI

[16] Yurkin M. A., “Computational Approaches for Plasmonics”, Handbook of Molecular Plasmonics, Chapter 2, eds. Fabio Della Sala, Stefania D'Agostino, Pan Stanford Publishing, 2013, 83–135 | DOI

[17] Khlebtsov N. G., “T-matrix method in plasmonics: An overview”, J. Quantitat. Spectr. Radiat. Trans., 123 (2013), 184–217 | DOI

[18] Grishina N. V., Eremin Yu. A., Sveshnikov A. G., “New Concept of the Discrete Sources Method in Electromagnetic Scattering Problems”, Mathematical Models and Computer Simulations, 8:2 (2016), 175–182 | DOI | MR

[19] McMahon J. M., Gray S. K., Schatz G. C., “Calculating nonlocal optical properties of structures with arbitrary shape”, Phys. Rev. B, 82 (2010), N035423 | DOI | MR

[20] Hiremath K. R., Zschiedrich L., Schmidt F., “Numerical solution of nonlocal hydrodynamic Drude model for arbitrary shaped nano-plasmonic structures using Nedelec finite elements”, J. Comp. Phys., 231 (2012), 5890–5898 | DOI

[21] Li L., Lanteri S., Mortensen N. A., Wubsc M., A hybridizable discontinuous Galerkin method for solving nonlocal optical response models, 24 Nov 2016, arXiv: 1611.08313v1 | MR

[22] Schmitt N., Scheid C., Lanteri S., Moreau A., Viquerat J., “A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects”, J. Computat. Phys., 316 (2016), 396–415 | DOI | MR

[23] Schnitzer O., Giannini V., Maier S. A., Craster R. V., “Surface-plasmon resonances of arbitrarily shaped nanometallic structures in the small-screening-length limit”, Proc. R. Soc. A, 472 (2016), N20160258 | DOI | MR

[24] Trivedi R., Thomas A., Dhawan A., “Full-wave electromagentic analysis of a plasmonic nanoparticle separated from a plasmonic film by a thin spacer layer”, Optics Express, 22:17 (2014), 19970–19988 | DOI

[25] Ciraci C., Hill R. T., Mock J. J., Urzhumov Y., et al., “Probing the Ultimate Limits of Plasmonic Enhancement”, Science, 337 (2012), 1072–1074 | DOI

[26] Eremin Iu.A., Orlov N. V., Sveshnikov A. G., “Analiz matematicheskoi modeli zagriaznenii silikonovykh vafel na osnove metoda diskretnykh istochnikov”, Matem. modelirovanie, 8:10 (1996), 113–127

[27] Jerez-Hanckes C., Nedelec J.-C., Asymptotics for Helmholtz and Maxwell solutions in 3-D open waveguides, Research report No 2010-07, ETH, Swiss Federal Institute of Technology Zurich, February 2010, 25 pp.

[28] Born M., Wolf E., Principles of Optics, Pergamon Press, London, 1970 | MR

[29] Dmitriev V. I., Elektromagnitnye polia v neodnorodnykh sredakh, Izd-vo MGU, M., 1969, 131 pp.

[30] Morozov V. A., Reguliarnye metody resheniia nekorrektno postavlennykh zadach, Nauka, M., 1987, 239 pp.

[31] http://www.refractiveindex.info