Numerical simulation of self-oscilation in combustion chamber
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 66-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

Turbulence combustion model for self-oscillation calculation in combustion chamber is presented. The model is based on LES jointly with global methane air combustion mechanism. Numerical simulation of self-oscillation in laboratory combustion chamber was carry out. It is shown that fist longitudinal mode of oscillation have been predicted correctly.
Mots-clés : turbulence, combustion
Keywords: self-oscillations.
@article{MM_2018_30_4_a3,
     author = {S. A. Cheprasov},
     title = {Numerical simulation of self-oscilation in combustion chamber},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {66--72},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a3/}
}
TY  - JOUR
AU  - S. A. Cheprasov
TI  - Numerical simulation of self-oscilation in combustion chamber
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 66
EP  - 72
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a3/
LA  - ru
ID  - MM_2018_30_4_a3
ER  - 
%0 Journal Article
%A S. A. Cheprasov
%T Numerical simulation of self-oscilation in combustion chamber
%J Matematičeskoe modelirovanie
%D 2018
%P 66-72
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a3/
%G ru
%F MM_2018_30_4_a3
S. A. Cheprasov. Numerical simulation of self-oscilation in combustion chamber. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 66-72. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a3/

[1] Larionov V. M., Zaripov R. G., Avtokolebaniia gaza v ustanovkakh s goreniem, Izd-vo Kazan. gos. tekhn. un-ta, Kazan, 2003, 227 pp.

[2] Crocco L., “Aspects of combustion instability in liquid propellant rocket motors”, Part I. J. A. Rocket Soc., 21 (1951), 163–178 | DOI

[3] Doroshenko V. E., Zaitsev S. F., Furletov V. I., “O dvukh rezhimakh raboty modelnoi kamery sgoraniia kak termoakusticheskoi avtokolebatelnoi sistemy”, Zhurn. tekhn. fiziki, 1967, no. 1, 64–70

[4] Poinsot T., Veynante D., Theoretical and Numerical Combustion, 3rd ed., 2011

[5] Schmitt P., Poinsot T., Schuermans B., Geigle K. P., “Large-eddy simulation and experimental study of heat transfer, nitric oxide emissions and combustion instability in a swirled turbulent high-pressure burner”, J. Fluid Mech., 570 (2007), 17–46 | DOI

[6] Wolf P., Staffelbach G., Balakrishnan R., Roux A., Poinsot T., “Azimuthal instabilities in annular combustion chambers”, Proc. of the Summer Program, Center for Turbulence Research, 2010, 259–269

[7] Fureby C., “LES of a multi-burner annular gas turbine combustor”, Flow, Turb. Combust., 84 (2010), 543–564 | DOI

[8] Hernández I., Staffelbach G., Poinsot T., Casado J. C., Kok J. W. B., “LES and acoustic analysis of thermo-acoustic instabilities in a partially premixed model combustor”, Comptes Rendus de l'Academie des Sciences – Series II, Mecanique, 341:1–2 (2013), 121–130 | DOI

[9] Secundov A. N., Cheprasov S. A., Yakubovskii K. Ya., “Comparison of simulated results for CO fields at the flame front by the RANS and LES methods”, High Temperature, 53:5 (2015), 709–712 | DOI

[10] Germano M., Piomelli U., Moin P., Cabot W. H., “A dynamic subgrid-scale eddy viscosity model”, Phys. Fluids A, 3:7 (1991), 1760–1765 | DOI

[11] Grinstein F. F., Kailasanath K. K., “Three Dimensional Numerical Simulations of Unsteady Reactive Square Jets”, Comb. Flame, 100 (1994), 2 | DOI

[12] Cheprasov S., “Numerical simulation of the ONERA/LAERTA step burner”, Nonequilibrium processes in physics and chemistry, v. 2, Combustion and Its Application, eds. A.M. Starik, S. M. Frolov, TORUS PRESS, M., 2016, 195–203

[13] Langhorne P. J., “Reheat buzz: an acoustically coupled combustion instability. Part 1. Experiment”, J. Fluid Mech., 193 (1988), 417–443 | DOI

[14] Lyubimov D. A., “Development and application of a high-resolution technique for jet flow computation using large eddy simulation”, High Temperature, 50:3 (2015), 420–436 | DOI | MR