Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Finite-difference scheme
Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 21-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite difference scheme for propagation modeling of the seismoacoustic field in a axial-symmetric absorbing media, excited by a emitter in a borehole fluid (a monopole, a dipole or a quadrupole) at acoustic logging or by a emitter in an elastic medium (a concentrated force, a dipole or a center of expansion) at seismic prospecting is presented. The explicit finite difference scheme approximating the equations of modified Biot’s model describing propagation of acoustic waves into the isotropic porous viscoelastic medium saturated with a viscous fluid is offered.
Keywords: viscoelasticity, modified Biot's equations, acoustic logging, seismic prospecting.
@article{MM_2018_30_4_a1,
     author = {B. D. Plyushchenkov and V. I. Turchaninov and A. A. Nikitin},
     title = {Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. {Finite-difference} scheme},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--42},
     publisher = {mathdoc},
     volume = {30},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_4_a1/}
}
TY  - JOUR
AU  - B. D. Plyushchenkov
AU  - V. I. Turchaninov
AU  - A. A. Nikitin
TI  - Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Finite-difference scheme
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 21
EP  - 42
VL  - 30
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_4_a1/
LA  - ru
ID  - MM_2018_30_4_a1
ER  - 
%0 Journal Article
%A B. D. Plyushchenkov
%A V. I. Turchaninov
%A A. A. Nikitin
%T Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Finite-difference scheme
%J Matematičeskoe modelirovanie
%D 2018
%P 21-42
%V 30
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_4_a1/
%G ru
%F MM_2018_30_4_a1
B. D. Plyushchenkov; V. I. Turchaninov; A. A. Nikitin. Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Finite-difference scheme. Matematičeskoe modelirovanie, Tome 30 (2018) no. 4, pp. 21-42. http://geodesic.mathdoc.fr/item/MM_2018_30_4_a1/

[1] Favorskaia A. V., Petrov I. B., Golubev V. I., Khokhlov N. I., “Chislennoe modelirovanie setochno-kharakteristicheskim metodom vozdeistviia zemletriaseniia na sooruzheniia”, Matematicheskoe modelirovanie, 27:12 (2015), 109–120

[2] Carcione J. M., Kosloff D., Kosloff R., “Wave propagation simulation in a linear viscoelastic medium”, Geophysical Journal, 95 (1988), 597–611 | DOI

[3] Plyushchenkov B. D., Turchaninov V. I., Nikitin A. A., “Modelirovaniye seysmoakusticheskikh poley v aksial'no-simmetrichnykh pogloshchayushchikh sredakh. Postanovka zadachi”, Matematicheskoe modelirovanie, 29:9 (2017), 62–76

[4] Biot M. A., “Generalized theory of acoustic propagation in porous dissipative media”, J. Acoustic Society of America, 34:9 (1962), 1254–1264 | DOI | MR

[5] Aki K., Richards P. G., Quantitative Seismology, Theory and Methods, v. 1, Freeman, San Francisco, 1980, 557 pp.

[6] Plyushchenkov B. D., Turchaninov V. I., “Acoustic logging modeling by refined Biot's equations”, Int. J. of Modern Physics C, 11:2 (2000), 1–32 | DOI

[7] Plyushchenkov B. D., Turchaninov V. I., “Construction principles of the efficient finite difference scheme for the refined Biot's equations”, Poromechanics II, eds. Auriault et al., Swets and Zeitlinger, Lisse, 2002, 757–764

[8] Tikhonov A. N., Samarskiy A. A., “Ob odnorodnykh raznostnykh skhemakh”, ZHVM i MPH, 1:1 (1961), 5–61

[9] Plyushchenkov B. D., Turchaninov V. I., “Optimum approximation of convolution of arbitrary grid function with the power kernel”, Poromechanics II, eds. Auriault et al., Swets and Zeitlinger, Lisse, 2002, 753–756

[10] Pliushchenkov B. D., Turchaninov V. I., “Poshagovaia svertka”, Keldysh Institute preprints, 2009, 024, 24 pp.

[11] Randall C. J., Scheibner D. J., Wu P. T., “Multipole borehole acoustic waveforms: Synthetic logs with beds and borehole washouts”, Geophysics, 56:11 (1991), 1757–1769 | DOI

[12] Hua Y., Sarkar T. K., “Matrix Pencil Method of Estimating Parameters of Exponentially Damped/Undamped Sinusoids in Noise”, IEEE Transactions on Acoustics, Speech and Signal Processing, 38:5 (1990), 814–824 | DOI | MR

[13] Plyushchenkov B. D., Turchaninov V. I., “Solution of Pride's equations through potentials”, Int. J. of Modern Physics C, 17 (2006), 877–908 | DOI

[14] Tang X. M., Cheng A., Quantitative Borehole Acoustic Methods, Seismic Exploration, 24, Elsevier Ltd., 2004, 255 pp.

[15] Brie D., Endo T., Johnson D. L., Pampuri F., “Quantitative formation permeability evaluation from Stoneley waves”, SPE, 1998, 49131, 12 pp.