On solution of an inverse non-stationary scattering problem in a two-dimentional homogeneous layered medium by means of $\tau-p$ Radon transform
Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 101-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a two-dimensional non-stationary inverse scattering problem in a layered homogeneous acoustic medium. Data is the scattered wavefield from a surface point source, registered on the boundary of the half-plane. We prove the uniqueness of recovering of an acoustic impedance and a velocity in a medium from the scattering data. An algorithm for solving of the inverse two-dimensional scattering problem as a one-dimensional problem with parameter, based on $\tau-p$ Radon transform is constructed. Also, some results of numerical modeling of the direct scattering problem and solving a pair of inverse scattering problems in a layered homogeneous acoustic medium are presented. The proposed algorithm is applicable to data processing in geophysical prospecting as in surface seismics and vertical seismic profiling.
Keywords: inverse non-stationary scattering problem, layered acoustic medium, acoustic impedance, surface seismics.
Mots-clés : Radon transform, eikonal
@article{MM_2018_30_3_a6,
     author = {A. V. Baev},
     title = {On solution of an inverse non-stationary scattering problem in a two-dimentional homogeneous layered medium by means of $\tau-p$ {Radon} transform},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--117},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_3_a6/}
}
TY  - JOUR
AU  - A. V. Baev
TI  - On solution of an inverse non-stationary scattering problem in a two-dimentional homogeneous layered medium by means of $\tau-p$ Radon transform
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 101
EP  - 117
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_3_a6/
LA  - ru
ID  - MM_2018_30_3_a6
ER  - 
%0 Journal Article
%A A. V. Baev
%T On solution of an inverse non-stationary scattering problem in a two-dimentional homogeneous layered medium by means of $\tau-p$ Radon transform
%J Matematičeskoe modelirovanie
%D 2018
%P 101-117
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_3_a6/
%G ru
%F MM_2018_30_3_a6
A. V. Baev. On solution of an inverse non-stationary scattering problem in a two-dimentional homogeneous layered medium by means of $\tau-p$ Radon transform. Matematičeskoe modelirovanie, Tome 30 (2018) no. 3, pp. 101-117. http://geodesic.mathdoc.fr/item/MM_2018_30_3_a6/

[1] Tikhonov A. N., “On uniqueness of solution of the electroprospecting problem”, Dokl. Akad. Nauk SSSR, 69:6 (1949), 797–800 | MR

[2] Tikhonov A. N., “Mathematical basis of the theory of electromagnetic soundings”, Comp. Math. Math. Phys., 5:3 (1965), 207–211 | DOI

[3] Kolmogorov A. N., “Sur l'interpolation et l'extrapolation des suites stationnaires”, C.R. Acad. Sci. Paris, 208 (1939), 2043–2045

[4] Claerbout J. F., Jonson A. G., “Extrapolation of time dependent waveforms along their path of propagation”, Geophys. J.R. Astron. Soc., 26:1–4 (1971), 285–295

[5] Schultz P. S., “Velocity estimation and downward continuation by wave front synthesis”, Geophysics, 43 (1978), 691–714 | DOI

[6] Claerbout J. F., Fundamentals of gephisical data processing, McGraw-Hill Inc., NY., 1976, 304 pp.

[7] McMechan G. A., “Migration by extrapolation of time-dependent boundary value”, Geophys. Prosp., 31 (1983), 413–420 | DOI

[8] Romanov V. G., “Determining the parameters of a stratified piecewise constant medium for the unknown shape of an impulse source”, Sib. Math. J., 48:6 (2007), 1074–1084 | DOI | MR

[9] Romanov V. G., “On the problem of determining the parameters of a layered elastic medium and an impulse source”, Siberian Math. J., 49:5 (2008), 919–943 | DOI | MR

[10] Romanov V. G., Inverse Problems of Mathematical Physics, VSP, Netherlands, 1984, 253 pp. | MR

[11] Lavrent'ev M. M., Reznitskaia K. G., Iakhno V. G., Odnomernye obratnye zadachi matematicheskoi fiziki, Nauka, Sib. otdelenie, Novosibirsk, 1982, 88 pp.

[12] Bessonova E. N., Fishman V. M., Ryaboy V. Z., Sitnikova G. A., “The tau method for inversion of travel times. 1. Deep seismic sounding data”, Geophys. J. R. Astron. Soc., 36 (1974), 377–398 | DOI

[13] Chapman C. H., “A new method for computing synthetic seismograms”, Geophys. J. R. Astron. Soc., 54 (1978), 481–518 | DOI

[14] Chapman C. H., “Generalized radon transform and slant stacks”, Geophys. J. R. Astron. Soc., 66 (1981), 445–453 | DOI

[15] Clayton R. W., McMechan G. A., “Inversion of refraction data by wavefield continuation”, Geophysics, 46 (1981), 860–868 | DOI

[16] Brocher T. M., Phinney R. A., “Inversion of slant stacks using finite-length record sections”, J. Geophys. Res., 86 (1981), 7065–7072 | DOI

[17] McMechan G. A., “$p-x$ imaging by localized slant stacks of T-x data”, Geophys. J. R. Astr. Soc., 72 (1983), 213–221 | DOI

[18] Milkereit B., Mooney W. D., Kohler W. M., “Inversion of seismic refraction data in planar dipping structure”, Geophys. J. Intern., 82:1 (1985), 81–103 | DOI

[19] Kupps M. E., Harding A. J., Orcutt J. A., “A comparison of tau-p transform methods”, Geophysics, 55:9 (1990), 1202–1215 | DOI

[20] Zhou B., Greenhalgh S. A., “Linear and parabolic $\tau-p$ transforms revisited”, Geophysics, 59:7 (1994), 1133–1149 | DOI

[21] Baev A. V., “On $t$-Local Solvability of Inverse Scattering Problems in Two Dimensional Layered Media”, Comp. Math. Math. Phys., 55:6 (2015), 1033–1050 | DOI | MR

[22] Baev A. V., “Imaging of Layered Media in Inverse Scattering Problems for an Acoustic Wave Equation”, Math. Models Comp. Simul., 8:6 (2016), 689–702 | DOI | MR

[23] Alekseev A. S., Megrabov A. G., “Priamye i obratnye zadachi rasseiania ploskikh voln v neodnorodnykh sloiakh”, Matematicheskie problemy geofiziki, 1972, no. 3, 8–36

[24] Megrabov A. G., “Sposob vosstanovlenia plotnosti i skorosti v neodnorodnom sloe kak funktsii glubiny po semeistvu ploskikh voln, otrazhennykh ot sloia pod razlichnymi uglami”, Matematicheskie problemy geofiziki, 5:2 (1974), 78–107

[25] Nowacki W., Teoria Sprezystosci, PWN, Warsawa, 1970, 769 pp. | MR

[26] Tikhonov A. N., Samarskii A. A., Equations of Mathematical Physics, Dover Publications Inc., NY, 2013, 800 pp. | MR

[27] Baev A. V., Kutsenko N. V., “Solving the Inverse Generalized Problem of Vertical Seismic Profiling”, Computational Math. and Modeling, 15:1 (2004), 1–18 | DOI | MR

[28] Baev A. V., Kutsenko N. V., “Identification of a Dissipation Coefficient by a Variational Method”, Comp. Math. and Math. Physics, 46:10 (2006), 1796–1807 | DOI | MR

[29] Blagoveshchenskii A. S., “O lokal'nom metode resheniia nestatsionarnoi obratnoi zadachi dlia neodnorodnoi struny”, Trudy MIAN im. V. A. Steklova, CXV, Nauka, L., 1971, 28–38

[30] Baev A. V., “A method of solving the inverse scattering problem for the wave equation”, Comp. Math. and Math. Physics, 28:1 (1988), 15–21 | DOI | MR

[31] Baev A. V., “On the solution of the inverse problem of scattering of a plane wave by a layered-inhomogeneous mediumi”, Sov. Phys. Dokl., 32:1 (1988), 26–28 | MR

[32] Baev A. V., “On the solution of the inverse boundary value problem for the wave equation with a discontinuous coefficient”, Comp. Math. Math. Phys., 28:6 (1988), 11–21 | DOI | MR

[33] Baev A. V., “On Local Solvability of Inverse Scattering Problems for the Klein-Gordon Equation and the Dirac System”, Math. Notes, 96:2 (2014), 286–289 | DOI | DOI | MR

[34] Baev A. V., “Solution of an Inverse Scattering Problem for the Acoustic Wave Equation in Three-Dimensional Media”, Comp. Math. Math. Physics, 56:12 (2016), 15–21 | MR

[35] Tikhonov A. N., “Solution of incorrectly formulated problems and regularization methods”, Soviet Math. Dokl., 4 (1963), 1035–1038 | MR

[36] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, John Wiley, N.Y., 1977, 258 pp. | MR | MR

[37] Kaufman A. A., Levshin A. L., Larner K. L., Acoustic and elastic wave fields in geophysics, v. II, Elsevier, NY., 2002, 660 pp.