Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2018_30_2_a4, author = {B. N. Chetverushkin}, title = {Hyperbolic quasi-gasdynamic system}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--98}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2018_30_2_a4/} }
B. N. Chetverushkin. Hyperbolic quasi-gasdynamic system. Matematičeskoe modelirovanie, Tome 30 (2018) no. 2, pp. 81-98. http://geodesic.mathdoc.fr/item/MM_2018_30_2_a4/
[1] Sydney Chapman, T. G. Cowling, The Mathematical Theory of Non-uniform Gases, Cambridge University Press, 1970, 423 pp. | MR
[2] Libov R., Vvedenie v teoriiu kineticheskikh uravnenii, Mir, M., 1974
[3] Vedeniapin V. V., Kineticheskie uravneniia Boltsmana i Vlasova, Fizmatlit, M., 2001, 112 pp.
[4] Volchinskaia M. I., Pavlov A. N., Chetverushkin B. N., “Ob odnoi skheme integrirovaniia uravnenii gazovoi dinamiki”, Keldysh Institute preprints, 1983, 113, 12 pp.
[5] Elizarova T. G., Chetverushkin B. N., “Ob odnom vychislitelnom algoritme dlia rascheta gazodinamicheskikh techenii”, DAN SSSR, 279:1 (1984), 80–83
[6] Elizarova T. G., Chetverushkin B. N., “Ispolzovanie kineticheskikh modelei dlia rascheta gazodinamicheskikh techenii”, Matematicheskoe modelirovanie. Protsessy v nelineinykh sredakh, Nauka, M., 1986, 261–278
[7] Chetverushkin B. N., Kinetic Schemes and Quasi-Gas Dynamic System of Equations, CIMNE, Barcelona, 2008
[8] Elizarova T. G., Quasi-Gas Dynamic Equations, Springer-Verlag, Berlin–Heidelberg–New York, 2009 | MR
[9] Hirschfelder Joseph O., Curtiss Charles Francis, Bird Robert Byron, Molecular theory of gases and liquids, University of Wisconsin, Theoretical Chemistry Laboratory, Wiley, 1954, 1249 pp.
[10] Andreev S. S., Davydov A. A., Dbar S. A., et al., “The experience of building a sample hybrid NUMA claster”, Proc. Inter. Conf. “Distributed computing and grid technologies in science and education” (Dubna, Russia, 2008)
[11] Samarskii A. A., The theory of difference schemes, Marcel Dekker Inc., New York, 2001, 788 pp. | MR
[12] Zlotnik A. A., Chetverushkin B. N., “Parabolicity of the quasi-gas-dynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them”, Computational Mathematics and Mathematical Physics, 48:3 (2008), 420–446 | DOI | MR
[13] Golant V. E., Zhilinskii A. P., Sakharov I. E., Osnovy fiziki plazmy, Atomizdat, M., 1977
[14] Chetverushkin B. N., Gulin A. V., “Explicit Schemes and Numerical Simulation Using Ultrahigh-Performance Computer Systems”, Doklady Mathematics, 86:2 (2012), 677–680 | DOI | MR
[15] Ascenzo N. D., Saveliev V. I., Chetverushkin B. N., “On an algorithm for solving parabolic and elliptic equations”, Computational Mathematics and Mathematical Physics, 55:8 (2015), 1290–1297 | DOI | MR
[16] Chetverushkin B. N., Achenzo N. D., Ishanov S., Saveliev V. I., “Hyperbolic type explicit kinetic scheme of magnetogasdynamics for high performance computing systems”, Russian Journ. Numer. Analys Math. Modeling, 30:1 (2015), 27–36 | MR
[17] A.A. Davydov, B.N. Chetverushkin, E.V. Shilnikov, “Simulating Flows of Incompressible and Weakly Compressible Fluids on Multicore Hybrid Computer Systems”, Comp. Mathematics and Mathematical Physics, 50:12 (2010), 2157–2165 | DOI | MR
[18] Chia U., Chia K. V., Shin C. T., “High Resolutions for incompressible flow using the Navier-Stokes equations and a multigrid method”, J. Comput. Physics, 48:3 (1982), 387–411 | DOI | MR
[19] Ladyzhenskaia O. A., Matematicheskie voprosy dinamiki neszhimaemoi viazkoi zhidkosti, Nauka, M., 1970, 288 pp.
[20] Sheretov Iu. V., Dinamika sploshchnykh sred pri prostranstvenno-vremennom soedinenii, NITs RKhD, Izhevsk, 2009
[21] Succi S., The Lattice-Boltzmann equation in fluid dynamics and beyond, Claredon Press, Oxford, 2001, 304 pp. | MR
[22] Repin S. I., Chetverushkin B. N., “Estimates of the Difference between Approximate Solutions of the Cauchy Problems for the Parabolic Diffusion Equation and a Hyperbolic Equation with a Small Parameter”, Doklady Mathematics, 88:1 (2013), 413–417 | DOI | MR
[23] Myshetskaya E. E., Tishkin V. F., “Estimates of the Hyperbolization Effect on the Heat Equation”, Comput. Math. and Math. Phys., 55:8 (2015), 1270–1275 | DOI | MR
[24] Surnachev M. D., Tishkin V. F., Chetverushkin B. N., “On Conservation Laws for Hyperbolized Equations”, Diff. Equat., 52:7 (2016), 817–823 | DOI | DOI | MR
[25] Sheretov Iu. V., “Kvazigidrodinamicheskie uravneniia kak model techenii viazkoi teploprovodnoi sredy”, Primenenie funktsionalnogo analiza v teorii priblizhenii, Izd. TGU, Tver, 1997, 127–155
[26] Zlotnik A. A., Chetverushkin B. N., “Entropy Balance for the One-Dimensional Hyperbolic Quasi-Gasdynamic System of Equations”, Doklady Mathematics, 95:3 (2017), 276–281 | DOI | MR
[27] Chetverushkin B. N., Aschenzo N. D., Savelev A. V., Savelev V. I., “Modelirovanie astrofizicheskikh iavlenii na osnove vysokoproizvoditelnykh vychislenii”, DAN, 472:5 (2017), 512–515
[28] Chetverushkin B. N., Kuleshov A. A., Savenkov E. B., “Supercomputing challenges in mathematical modeling for petroleum industry”, Oil Gas Field Engineering, 2014, no. 9, 26–35
[29] Chetverushkin B. N., Yakobovskiy M. V., “Numerical Algorithms and Fault Tolerance of Hyperexascale Computer Systems”, Dokl. Math., 95:1 (2017), 7–11 | DOI | MR