Reformulation of Vlasov--Maxwell system and a new method for its numerical solution
Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 21-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of numerical integration of the non-relativistic Vlasov-Maxwell system with 2nd order accuracy in time is suggested. This method ensures the fulfillment of the law of conservation of charge and is convenient for using parallel computations on GPUs. The method uses the expansion of the electric field in the solenoidal and potential part. The potential part is determined instantaneous action at a distance within the current distribution of the charge density. The magnetic field and solenoidal part of the electric field are determined from the system of hyperbolic equations of the 1st order. For the numerical integration of the system proposed a new explicit monotone high order accuracy scheme. To approximate the distribution function a fixed regular grid in the coordinate space and a movable regular grid in velocity space with a fixed size and pitch, and with a center at the local hydrodynamic velocity are used. A new algorithm for calculating the charge path is also used. This algorithm has shown high efficiency and can be used in the calculation of the actual charge to mass ratio of the electron.
Keywords: Vlasov–Maxwell system, new method of numerical solution.
@article{MM_2018_30_10_a1,
     author = {O. V. Mingalev and I. V. Mingalev and M. N. Melnik and O. I. Akhmetov and Z. V. Suvorova},
     title = {Reformulation of {Vlasov--Maxwell} system and a new method for its numerical solution},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--43},
     publisher = {mathdoc},
     volume = {30},
     number = {10},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2018_30_10_a1/}
}
TY  - JOUR
AU  - O. V. Mingalev
AU  - I. V. Mingalev
AU  - M. N. Melnik
AU  - O. I. Akhmetov
AU  - Z. V. Suvorova
TI  - Reformulation of Vlasov--Maxwell system and a new method for its numerical solution
JO  - Matematičeskoe modelirovanie
PY  - 2018
SP  - 21
EP  - 43
VL  - 30
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2018_30_10_a1/
LA  - ru
ID  - MM_2018_30_10_a1
ER  - 
%0 Journal Article
%A O. V. Mingalev
%A I. V. Mingalev
%A M. N. Melnik
%A O. I. Akhmetov
%A Z. V. Suvorova
%T Reformulation of Vlasov--Maxwell system and a new method for its numerical solution
%J Matematičeskoe modelirovanie
%D 2018
%P 21-43
%V 30
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2018_30_10_a1/
%G ru
%F MM_2018_30_10_a1
O. V. Mingalev; I. V. Mingalev; M. N. Melnik; O. I. Akhmetov; Z. V. Suvorova. Reformulation of Vlasov--Maxwell system and a new method for its numerical solution. Matematičeskoe modelirovanie, Tome 30 (2018) no. 10, pp. 21-43. http://geodesic.mathdoc.fr/item/MM_2018_30_10_a1/

[1] L.V. Borodachev, I.V. Mingalev, O.V. Mingalev, “Chislennoe reshenie diskretnoi modeli Vlasova–Darvina na osnove optimalnoi pereformulirovki polevykh uravnenyi”, Matematicheskoe modelirovanie, 18:11 (2006), 117–125

[2] L.V. Borodachev, I.V. Mingalev, O.V. Mingalev, “Sistema Vlasova–Darvina”, Matematicheskoe modelirovanie v nizkotemperaturnoi plazme, Enciklopedia nizkotemperaturnoi plazmy, ser. B, VII-1/3, ed. V.E. Fortov, Ianus-K, M., 2008, 140–150

[3] L.V. Borodachev, D.O. Kolomiets, “Elektronnaia vaibelevskaia neustoichivost plazmy s temperaturnoi anizotropiei”, Vestnik MGU, ser. 3, 65:2 (2010), 14–18

[4] L.V. Borodachev, D.O. Kolomiets, “Single-species Weibel instability of radiationless plasma”, Journal of Plasma Physics, 2010 | DOI

[5] Yu.S. Sigov, Chislennye metody kineticheskoi teorii plazmy, MFTI, M., 1984, 94 pp.

[6] C. Birdsall, A. Langdon, Plasma physics via computer simulation, McGraw-Hill, 1985

[7] B. Eliasson, “Numerical simulations of the Fourier transformed Vlasov-Maxwell system in higher dimensions — Theory and applications”, Transport Theory and Statistical Physics, 39:5–7 (2011) | DOI

[8] M. Rieke, T. Trost, R. Grauer, “Coupled Vlasov and two-fluid codes on GPUs”, J. of Comp. Physics, 283 (2015), 436–452

[9] N.V. Elkina, J. Buchner, “A new conservative unsplit method for the solution of the Vlasov equation”, J. of Comp. Physics, 213 (2006), 862–875

[10] G. Lapenta, J.U. Brackbill, P. Ricci, “Kinetic approach to microscopic-macroscopic coupling in space and laboratory plasmas”, Physics of plasmas, 13 (2006) | DOI

[11] S. Marskidis, G. Lapenta, Rizwan-uddin, “Multi-scale simulations of plasma with iPIC3D”, Mathematics and Computers in Simulation, 80 (2010), 1509

[12] A.N. Semenov, A.P. Smirnov, “Chislennoe modelirovanie uravnenii Maksvella s dispersnymi materialami”, Matematicheskoe modelirovanie, 25:12 (2013), 19–32

[13] A.G. Kulikovskii, N.V. Pogorelov, A.Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, 2-e izd., Fizmatlit, M., 2012, 656 pp.

[14] D.V. Bisikalo, A.G. Zhilkin, A.A. Boiarchuk, Gazodinamika tesnykh dvoinykh zvezd, Fizmatlit, M., 2013, 632 pp.