Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Problem statement
Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 62-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem statement of modeling of seismic prospecting in viscoelastic mediums for various emitter types is considered. The modified Biot’s equations describing a propagation of acoustic waves in isotropic porous viscoelastic medium, saturated with a viscous compressible fluid, are proposed. Problem statement of numerical modeling of acoustic logging in a borehole, filled with a compressible fluid, in axially symmetric case for multipole emitters, located on the borehole axis, is also formulated. The new effective method is suggested for the solution of acoustic equations in a viscous fluid for explicit finite-difference schemes. The enough effective conditions of transparency on exterior boundary of calculation region are offered.
Keywords: viscoelasticity, modified Biot’s equations, acoustic logging, seismic prospecting.
@article{MM_2017_29_9_a4,
     author = {B. D. Plyushchenkov and V. I. Turchaninov and A. A. Nikitin},
     title = {Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. {Problem} statement},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {62--76},
     publisher = {mathdoc},
     volume = {29},
     number = {9},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_9_a4/}
}
TY  - JOUR
AU  - B. D. Plyushchenkov
AU  - V. I. Turchaninov
AU  - A. A. Nikitin
TI  - Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Problem statement
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 62
EP  - 76
VL  - 29
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_9_a4/
LA  - ru
ID  - MM_2017_29_9_a4
ER  - 
%0 Journal Article
%A B. D. Plyushchenkov
%A V. I. Turchaninov
%A A. A. Nikitin
%T Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Problem statement
%J Matematičeskoe modelirovanie
%D 2017
%P 62-76
%V 29
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_9_a4/
%G ru
%F MM_2017_29_9_a4
B. D. Plyushchenkov; V. I. Turchaninov; A. A. Nikitin. Modeling of seismic-acoustic fields in axially symmetric absorbing mediums. Problem statement. Matematičeskoe modelirovanie, Tome 29 (2017) no. 9, pp. 62-76. http://geodesic.mathdoc.fr/item/MM_2017_29_9_a4/

[1] Leviant V. B., Petrov I. B., Golubev V. I., Muratov M. V., “Chislennoe 3D-modelirovanie obieemnogo volnovogo otklika ot sistem vertikalnykh makrotreshchin”, Tekhnologii seismorazvedki, 2014, no. 2, 5–23

[2] Favorskaia A. V., Petrov I. B., Golubev V. I., Khokhlov N. I., “Chislennoe modelirovanie setochnokharakteristicheskim metodom vozdeistviia zemletriaseniia na sooruzheniia”, Matematicheskoe modelirovanie, 27:12 (2015), 109–120

[3] Aki K., Richards P. G., Quantitative Seismology, Theory and Methods, v. I, Freeman, San Francisco, 1980, 557 pp.

[4] Asvadurov S., Knizhnermanz L., Pabon J., “Finite-difference modeling of viscoelastic materials with quality factors of arbitrary magnitude”, Geophysics, 69:3 (2004), 817–824 | DOI

[5] Biot M. A., “Generalized theory of acoustic propagation in porous dissipative media”, Journal Acoustic Society of America, 34:9 (1962), 1254–1264 | DOI | MR

[6] Johnson D. L., Koplik J., Dashen R., “Theory of dynamic permeability and tortuosity in fluidsaturated porous media”, Journal of Fluid Mechanics, 176 (1987), 379–402 | DOI | Zbl

[7] Dyshlyuk E., Parshin A. V., Charara M. G., Nikitin A., Plyushchenkov B., “InSitu Viscosity from Acoustic Logging”, SPE Annual Technical Conference and Exhibition (Denver, Colorado, USA, 30 Oct–2 Nov 2011), SPE 146023

[8] Iliasov Kh. Kh., Issledovanie akusticheskikh voln v sloistykh gidrouprugikh sredakh, Dissertatsiya na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, Institut problem mekhaniki RAN, M., 2005

[9] Christensen R. M., Theory of Viscoelasticity: An Introduction, Acad. Press, New York, 1971, 245 pp.

[10] Arntsen B., Carcione J. M., “Numerical simulation of the Biot slow wave in water-saturated Nivelsteiner Sandstone”, Geophysics, 66:3 (2009), 890–896 | DOI

[11] Carcione J. M., Kosloff D., Kosloff R., “Wave propagation simulation in a linear viscoelastic medium”, Geophysical Journal, 95 (1988), 597–611 | DOI

[12] Carcione J. M., “Viscoelastic effective rheologies for modeling wave propagation in porous media”, Geophysical Prospecting, 46 (1998), 249–270 | DOI

[13] Pliushchenkov B. D., Turchaninov V. I., “Poshagovaia svertka”, Preprinty IPM im. M.V. Keldysha RAN, 2009, 24, 24 pp.

[14] Ben-Menahem A., Singh S. J., Seismic Waves and Sources, Springer Verlag, New York, 1981, 1126 pp. | Zbl

[15] Wang T., Tang X., “Finite-difference modeling of elastic wave propagation: A nonsplitting perfectly matched layer approach”, Geophysics, 68:5 (2003), 1749–1755 | DOI

[16] Liu Q. H., Sinhaz B. K., “A 3D cylindrical PML/FDTD method for elastic waves in fluid-filled pressurized boreholes in triaxially stressed formations”, Geophysics, 68:5 (2003), 1731–1743 | DOI

[17] Pliushchenkov B. D., Pergament A. Kh., Petrenko F. A., Turchaninov V. I., “Chislennoe modelirovanie akusticheskogo karotazha skvazhin”, Preprinty IPM im. M.V. Keldysha RAN, 1997, 070, 28 pp. | Zbl

[18] Nikitin A. A., Plyushchenkov B. D., Segal A. Yu., “Properties of low-frequency trapped mode in viscous-fluid waveguides”, Geophysical Prospecting, 64:5 (2016), 1335–1349 | DOI

[19] Liu H.-L., Johnson D. L., “Effects of an elastic membrane on tube waves in permeable formations”, Journal Acoustic Society of America, 101:6 (1997), 3322–3329 | DOI

[20] Cerjan C., Kosloff D., Kosloff R., Reshef M., “A Non-Reflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations”, Geophysics, 50:4 (1985), 705–708 | DOI

[21] Sofronov I. L., Zaitsev N. A., “Numerical generation of transparent boundary conditions on the side surface of a vertical transverse isotropic layer”, Journal of Computational and Applied Mathematics, 234:6 (2010), 1732–1738 | DOI | MR | Zbl

[22] Abarbanel S., Gottlieb D., Hesthaven J. S., “Long Time Behavior of the Perfectly Matched Layer Equations in Computational Electromagnetics”, J. of Scientific Comp., 7:1 (2002), 405–422 | DOI | MR