Approximate hydromechanical solution of the private problem in perturbation of the surface of the water
Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 123-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents an approximate simulation of hydro-private water surface perturbation problem stock tsunami potential flat statement on the basis of the theory of functions of a complex variable by using the method of successive conformal mappings. Analytical dependences for the preliminary determination in the area of occurrence of tsunamis stock of all necessary parameters initial gravitational wave with the example of numerical calculation are obtained. It shows nonlinear growth pattern of gravitational wave height, qualitatively consistent with an asymmetrical wave disturbances from a meteorite fall in the water area.
Keywords: function of complex variable, conformal mappings consistent, complex potential, disturbance of water surface, stock tsunami.
@article{MM_2017_29_8_a8,
     author = {K. N. Anakhaev and H. M. Temukuev},
     title = {Approximate hydromechanical solution of the private problem in perturbation of the surface of the water},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {123--130},
     publisher = {mathdoc},
     volume = {29},
     number = {8},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_8_a8/}
}
TY  - JOUR
AU  - K. N. Anakhaev
AU  - H. M. Temukuev
TI  - Approximate hydromechanical solution of the private problem in perturbation of the surface of the water
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 123
EP  - 130
VL  - 29
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_8_a8/
LA  - ru
ID  - MM_2017_29_8_a8
ER  - 
%0 Journal Article
%A K. N. Anakhaev
%A H. M. Temukuev
%T Approximate hydromechanical solution of the private problem in perturbation of the surface of the water
%J Matematičeskoe modelirovanie
%D 2017
%P 123-130
%V 29
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_8_a8/
%G ru
%F MM_2017_29_8_a8
K. N. Anakhaev; H. M. Temukuev. Approximate hydromechanical solution of the private problem in perturbation of the surface of the water. Matematičeskoe modelirovanie, Tome 29 (2017) no. 8, pp. 123-130. http://geodesic.mathdoc.fr/item/MM_2017_29_8_a8/

[1] B.V. Levin, M.A. Nosov, “O vozmozhnosti formirovania tsunami v rezultate stoka vody v seismicheskie treshchiny dna”, Izvestiia RAN. Phizika atmosferey i okeana, 44:1 (2008), 122–126

[2] G.S. Podieiapolski, “Metody rascheta vozniknovenia i rasprostranenia tsunami”, Vozbuzhdenie tsunami zemletriaseniem, Nauka, M., 1978, 30–87

[3] K.N. Anakhaev, “A Particular Analytical Solution of a Steady-State Flow of a Groundwater Mound”, Water Resources, 36:5 (2009), 507–512 | DOI

[4] K.N. Anakhaev, “Hydromechanical Calculation of Symmetrical Potential Flow with a Free Surface and Sewer (Dreinage)”, Doklady Physics, 57:2 (2012), 81–86 | DOI

[5] N.N. Pavlovskii, Sobranie sochinenii, v. 2, Dvizhenie gruntovykh vod, Izd-vo AN SSSR, M.–L., 1956, 771 pp.

[6] R.R. Chugaev, Gidravlika, L., 1982, 672 pp.

[7] M.A. Lavrentiev, B.V. Shabat, Problemy gidrodinamiki i ikh matematicheskie modeli, Nauka, M., 1977, 407 pp.