Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite
Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 21-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dynamics of the electrodynamic tether system while moving in orbit around the Earth is investigated. The electrodynamic tether system consists of two spacecraft and the current conducting tether. For the analysis of oscillations of the tether system in orbit is made to construct a mathematical model of the system using the method of Lagrange. When constructing a mathematical model assumes that the tether is stretched by Hooke's law. The case in which the electrodynamic tether system operates in thrust generation, and a constant electric current is passed through the tether is considered. On the tether, as a conductor, Ampere force acting in the Earth's magnetic field, which is used to change the parameters of the orbit of the considered mechanical system. Numerical and analytical methods are analyzed oscillations of tether system in the gravitational field under the action of a distributed load of Ampere force. Detected and analyzed the effects associated with the interaction of bending and transverse oscillations tether system. It is shown that self-oscillations may occur in the system. Features of oscillations in the system in the plane and in three-dimensional case is considered. Impact on the oscillations in the system the mass ratio of the spacecraft, the current value and other parameters is analyzed. The possibilities of using conductive tethers to change the parameters of the spacecraft orbits are measured. Numerical examples for the most typical cases, oscillations in the system are given.
Keywords: electrodynamics tether system, spacecraft, Ampere force, dynamics, mathematical simulation.
Mots-clés : oscillations
@article{MM_2017_29_6_a1,
     author = {P. S. Voevodin and Yu. M. Zabolotnov},
     title = {Modeling and analysis of oscillations of electrodynamic tether system on orbit of {Earth} satellite},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--34},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/}
}
TY  - JOUR
AU  - P. S. Voevodin
AU  - Yu. M. Zabolotnov
TI  - Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 21
EP  - 34
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/
LA  - ru
ID  - MM_2017_29_6_a1
ER  - 
%0 Journal Article
%A P. S. Voevodin
%A Yu. M. Zabolotnov
%T Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite
%J Matematičeskoe modelirovanie
%D 2017
%P 21-34
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/
%G ru
%F MM_2017_29_6_a1
P. S. Voevodin; Yu. M. Zabolotnov. Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 21-34. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/

[1] V.V. Beletskii, E.M. Levin, Dinamika kosmicheskikh trosovykh system, Nauka, M., 1990, 336 pp.

[2] R. Zhong, Z.H. Zhu, “Dynamics of Nanosatellite Deorbit by Bare Electrodynamic Tether in Low Earth Orbit”, J. of Spacecraft and Rockets, 50:3 (2013), 691–700

[3] Cl. Bombardelli, D. Zanutto, E. Lorenzin, “Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits”, J. of Guidance, Control, and Dynamics, 36:5 (2013), 1550–1555

[4] R. Zhong, Z.H. Zhu, “Optimal Control of Nanosatellite Fast Deorbit Using Electrodynamic Tether”, J. of Guidance, Control, and Dynamics, 37:4 (2014), 176–184

[5] Yu.M. Zabolotnov, “Upravlenie razvertyvaniem orbitalnoi trosovoi sistemy v vertikalnoe polozhenie s malym gruzom”, Prikladnaya matematika i mekhanika, 79:1 (2015), 37–47

[6] O.N. Naumov, “Matematicheskaia model dvizheniia kosmicheskoi trosovoi sistemy v forme uravnenii Gamiltona”, Matematicheskoe modelirovanie, 27:9 (2015), 65–72