Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_6_a1, author = {P. S. Voevodin and Yu. M. Zabolotnov}, title = {Modeling and analysis of oscillations of electrodynamic tether system on orbit of {Earth} satellite}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {21--34}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/} }
TY - JOUR AU - P. S. Voevodin AU - Yu. M. Zabolotnov TI - Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite JO - Matematičeskoe modelirovanie PY - 2017 SP - 21 EP - 34 VL - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/ LA - ru ID - MM_2017_29_6_a1 ER -
%0 Journal Article %A P. S. Voevodin %A Yu. M. Zabolotnov %T Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite %J Matematičeskoe modelirovanie %D 2017 %P 21-34 %V 29 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/ %G ru %F MM_2017_29_6_a1
P. S. Voevodin; Yu. M. Zabolotnov. Modeling and analysis of oscillations of electrodynamic tether system on orbit of Earth satellite. Matematičeskoe modelirovanie, Tome 29 (2017) no. 6, pp. 21-34. http://geodesic.mathdoc.fr/item/MM_2017_29_6_a1/
[1] V.V. Beletskii, E.M. Levin, Dinamika kosmicheskikh trosovykh system, Nauka, M., 1990, 336 pp.
[2] R. Zhong, Z.H. Zhu, “Dynamics of Nanosatellite Deorbit by Bare Electrodynamic Tether in Low Earth Orbit”, J. of Spacecraft and Rockets, 50:3 (2013), 691–700
[3] Cl. Bombardelli, D. Zanutto, E. Lorenzin, “Deorbiting Performance of Bare Electrodynamic Tethers in Inclined Orbits”, J. of Guidance, Control, and Dynamics, 36:5 (2013), 1550–1555
[4] R. Zhong, Z.H. Zhu, “Optimal Control of Nanosatellite Fast Deorbit Using Electrodynamic Tether”, J. of Guidance, Control, and Dynamics, 37:4 (2014), 176–184
[5] Yu.M. Zabolotnov, “Upravlenie razvertyvaniem orbitalnoi trosovoi sistemy v vertikalnoe polozhenie s malym gruzom”, Prikladnaya matematika i mekhanika, 79:1 (2015), 37–47
[6] O.N. Naumov, “Matematicheskaia model dvizheniia kosmicheskoi trosovoi sistemy v forme uravnenii Gamiltona”, Matematicheskoe modelirovanie, 27:9 (2015), 65–72