Sample distribution function construction for non-stationary time-series forecasting
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 61-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method of non-stationary time-series trajectory generation is proposed in accordance with Fokker–Plank equation for the empirical distribution function density. Parameters of trend and diffusion are estimated on the samples of time-series. The numerical algorithm for pattern recognition functional testing in the non-stationary probability conditions is constructed.
Keywords: non-stationary time-series, trajectories modeling, pattern recognition functional testing.
@article{MM_2017_29_5_a4,
     author = {Yu. N. Orlov and S. L. Fedorov},
     title = {Sample distribution function construction for non-stationary time-series forecasting},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {61--72},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a4/}
}
TY  - JOUR
AU  - Yu. N. Orlov
AU  - S. L. Fedorov
TI  - Sample distribution function construction for non-stationary time-series forecasting
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 61
EP  - 72
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a4/
LA  - ru
ID  - MM_2017_29_5_a4
ER  - 
%0 Journal Article
%A Yu. N. Orlov
%A S. L. Fedorov
%T Sample distribution function construction for non-stationary time-series forecasting
%J Matematičeskoe modelirovanie
%D 2017
%P 61-72
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a4/
%G ru
%F MM_2017_29_5_a4
Yu. N. Orlov; S. L. Fedorov. Sample distribution function construction for non-stationary time-series forecasting. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 61-72. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a4/

[1] V. N. Vapnik, A. Ia. Chervonenkis, Teoriia raspoznavaniia obrazov, Nauka, M., 1974, 416 pp.

[2] A. I. Kobzar, Prikladnaia statistika, Fizmatlit, M., 2006, 816 pp.

[3] Yu. N. Orlov, D. O. Shagov, “Indikativnye statistiki dlia nestatsionarnykh vremennykh riadov”, Keldysh Institute preprints, 2011, 053, 20 pp.

[4] Yu. N. Orlov, S. L. Fedorov, V. A. Davidko, “K voprosu klassifikatsii nestatsionarnykh vremennykh riadov: sostav indeksa RTS”, Keldysh Institute preprints, 2014, 054, 18 pp.

[5] Yu. N. Orlov, S. L. Fedorov, “Modelirovanie i statisticheskii analiz funktsionalov, zadannykh na vyborkakh iz nestatsionarnogo vremennogo riada”, Keldysh Institute preprints, 2014, 043, 26 pp.

[6] A. D. Bosov, R. Sh. Kalmetiev, Yu. N. Orlov, “Modelirovanie nestatsionarnogo vremennogo riada s zadannymi svoistvami vyborochnogo raspredelenia”, Matematicheskoe modelirovanie, 26:3 (2014), 97–107 | Zbl

[7] A. D. Bosov, Yu. N. Orlov, “Empiricheskoe uravnenie Fokkera–Planka dlia prognozirovania nestatsionarnykh vremennykh riadov”, Keldysh Institute preprints, 2013, 003, 30 pp.

[8] Yu. N. Orlov, “Optimalnoe razbienie gistogrammy dlia otsenivania vyborochnoi plotnosti raspredelenia nestatsionarnogo vremennogo riada”, Keldysh Institute preprints, 2013, 14, 26 pp.

[9] V. S. Koroliuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Spravochnik po teorii veroiatnostei i matematicheskoi statistike, Nauka, M., 1985, 640 pp.

[10] Yu. N. Orlov, Kineticheskie metody issledovania nestatsionarnykh vremennykh riadov, MFTI, M., 2014, 276 pp.

[11] Yu. N. Orlov, K. P. Osminin, Nestatsionarnye vremennye riady: metody prognozirovania s primerami analiza finansovykh i syrievykh rynkov, Editorial URSS, M., 2011, 384 pp.