The phenomena of convection anomalous thermoviscous fluid flow
Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 16-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hydrodynamics particularities of currents that occur under heat convection of fluid with anomalous thermoviscous in a closed square cavity are studied. Mathematical model is based on the dynamics of continuous medium equation in the Oberbeck-Boussinesq approximation with nonmonotonic viscosity dependence of temperature. The finite volume method and SIMPLE algorithm based on multiprocessor technology are used for simulations. The dependence of anomalies parameters on the liquids convective flow character is considered. The influence of “viscous barrier” on the flows structure is determined for a number of problems variables.
Keywords: heat transfer, mass transfer, natural convection, anomalous viscosity of fluid, thermoviscous fluid
Mots-clés : viscous barrier.
@article{MM_2017_29_5_a1,
     author = {V. S. Kuleshov and K. V. Moiseev and S. F. Khizbullina and K. I. Mikhaylenko and S. F. Urmancheev},
     title = {The phenomena of convection anomalous thermoviscous fluid flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--26},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_5_a1/}
}
TY  - JOUR
AU  - V. S. Kuleshov
AU  - K. V. Moiseev
AU  - S. F. Khizbullina
AU  - K. I. Mikhaylenko
AU  - S. F. Urmancheev
TI  - The phenomena of convection anomalous thermoviscous fluid flow
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 16
EP  - 26
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_5_a1/
LA  - ru
ID  - MM_2017_29_5_a1
ER  - 
%0 Journal Article
%A V. S. Kuleshov
%A K. V. Moiseev
%A S. F. Khizbullina
%A K. I. Mikhaylenko
%A S. F. Urmancheev
%T The phenomena of convection anomalous thermoviscous fluid flow
%J Matematičeskoe modelirovanie
%D 2017
%P 16-26
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_5_a1/
%G ru
%F MM_2017_29_5_a1
V. S. Kuleshov; K. V. Moiseev; S. F. Khizbullina; K. I. Mikhaylenko; S. F. Urmancheev. The phenomena of convection anomalous thermoviscous fluid flow. Matematičeskoe modelirovanie, Tome 29 (2017) no. 5, pp. 16-26. http://geodesic.mathdoc.fr/item/MM_2017_29_5_a1/

[1] Urmancheev S. F., Kireev V. N., “Steady flow of a fluid with an anomalous temperature dependence of viscosity”, Doklady Physics, 49:5 (2004), 328–331 | DOI

[2] Khizbullina S. F., “Chislennoe issledovanie techeniia zhidkosti s nemonotonnoi zavisimostiu viazkosti ot temperatury”, Vestnik Bashkirskogo universiteta, 2006, no. 2, 22–25

[3] Khizbullina S. F., Urmancheev S. F., Kireev V. N., “Matematicheskoe modelirovanie techeniia anomalno termovyazkoi zhidkosti v tsilindricheskom kanale”, Trudy Chetvertoi Rossiiskoi natsionalnoi konferentsii po teploobmenu, v 8 tomakh, v. 2, Vynuzhdennaia konvektsiia odnofaznoi zhidkosti, Izdatelskii dom MEI, M., 2006, 145–148

[4] Ilyasov A. M., Moiseev K. V., Urmancheev S. F., “Chislennoe modelirovanie termokonvektsii zhidkosti s kvadratichnoi zavisimostiu viazkosti ot temperatury”, Sib. zhurn. industr. matem., 8:4 (2005), 51–59 | Zbl

[5] Gershuni G. Z., Zhukhovitskii E. M., Konvektivnaia ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972, 392 pp.

[6] Getling A. V., Konvektsiia Releya–Benara. Struktury i dinamika, Editorial URSS, M., 1998, 248 pp.

[7] Patankar S., Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, New York, 1980 | Zbl

[8] Biblioteka reshatelei (High performance preconditioners), http://computation.llnl.gov/project/linear_solvers/

[9] Falgout R. D., “An introduction to algebraic Multigrid”, Computing in Science and Eng., 8:6 (2006), 24–33 | DOI

[10] Anderson D., Tannehill J., Pletcher R., Computational Fluid Mechanics and Heat Transfer, Hemisphere Publishing Corporation, New York, 1984 | MR | MR | Zbl

[11] Samarskii A. A., Gulin A. V., Chislennye metody, Ucheb. Posobie dlia vuzov, Nauka. Gl. red. fiz-mat. lit., M., 1989, 432 pp. | MR

[12] Ouertatani N. et al., “Numerical simulation of two-dimensional Rayleigh–Benard convection in an enclosure”, C. R. Mecanique, 336:5 (2008), 464–470 | DOI | Zbl

[13] Vychislitelnyi klaster UGATU, http://www.ufa-rb.ru/supercomputer/

[14] Gazizov R. K., Lukashchuk S. Yu., Mikhajlenko K. I., “Razrabotka parallelnykh algoritmov resheniia zadach mekhaniki sploshnoi sredy na osnove printsipa prostranstvennoi dekompozitsii”, Vestnik UGATU, 4:1 (2003), 100–107