Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 113-120.

Voir la notice de l'article provenant de la source Math-Net.Ru

A non-linear differencing scheme for convection equations solution within Rayleigh–Taylor instability models in the equatorial area of the Earth ionosphere is considered. For test problems an experimental value of the approximation order of the offered non-linear correction method of the difference scheme is received numerically and monotony of the constructed scheme is confirmed.
Keywords: ionosphere, mathematical modeling, numerical simulation, monotonic differencing scheme.
Mots-clés : convection equation
@article{MM_2017_29_4_a8,
     author = {N. M. Kashchenko and S. A. Ishanov and S. V. Matsievsky},
     title = {Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--120},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/}
}
TY  - JOUR
AU  - N. M. Kashchenko
AU  - S. A. Ishanov
AU  - S. V. Matsievsky
TI  - Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 113
EP  - 120
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/
LA  - ru
ID  - MM_2017_29_4_a8
ER  - 
%0 Journal Article
%A N. M. Kashchenko
%A S. A. Ishanov
%A S. V. Matsievsky
%T Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere
%J Matematičeskoe modelirovanie
%D 2017
%P 113-120
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/
%G ru
%F MM_2017_29_4_a8
N. M. Kashchenko; S. A. Ishanov; S. V. Matsievsky. Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 113-120. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/

[1] V. Yu. Gaydukov, N. M. Kashchenko, S. V. Matsievsky i dr., “Zapusk ekvatorialnykh puzyrey putem modifikatsii E-sloya”, Geomagnetizm i Aeronomiya, 31:6 (1991), 1042–1048

[2] S. V. Matsievskii, N. M. Kashchenko, M. A. Nikitin, “Ionospheric bubbles: Ion composition, velocities of plasma motion and structure”, Radiophysics and Quantum Electronics, 32:11 (1989), 969–974 | DOI

[3] B. N. Gershman, Dinamika ionosfernoi plazmy, Nauka, M., 1974

[4] G. Gred, “O kineticheskoi teorii razrezhennykh gazov”, Mekhanika, 1952, no. 4, 71–79; No 5, 61–96; H. Grad, “On the kinetic theory of rarefied gases”, Comm. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl

[5] V. V. Rybin, V. M. Polyakov, “Ob ambipolyarnosti dvizheniy ionosfernoy plazmy”, Ionosfernye issledovaniya, 1983, no. 33, 5–44

[6] A. E. Hedin, J. E. Salah, J. V. Evans et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147 | DOI

[7] S. Matsievsky, N. Kashchenko, S. Ishanov, L. Zinin, “3D-simulation of equatorial F-spread: a comparing MI3 with SAMI3”, Vest. Baltiiskogo feder. univer. im. I. Kanta, 2013, no. 4, 102–105

[8] Guide to reference and standard ionosphere models, American Institute of Aeronautics and Astronautics, 2011

[9] J. D. Huba, G. Joyce, J. Krall, “Three-dimensional modeling of equatorial spread F”, Aeronomy of the Earth's atmosphere and ionosphere, IAGA Special Sopron Book Series, 2, 2011, 211–218

[10] V. V. Medvedev, S. A. Ishanov, V. I. Zenkin, “Self-consistent model of the lower ionosphere”, Geomagnetism and Aeronomy, 42:6 (2002), 745–754

[11] V. V. Medvedev, S. A. Ishanov, V. I. Zenkin, “Effect of vibrationally excited nitrogen on recombination in ionospheric plasma”, Geomagnetism and Aeronomy, 43:2 (2003), 231–238

[12] S. A. Ishanov, L. V. Zinin, S. V. Klevtsur, S. V. Matsievsky, V. I. Saveliev, “Simulation of longitudinal variations of Earth ionosphere parameters”, Matematicheskoe modelirovanie, 28:3 (2016), 64–78 | Zbl

[13] E. M. Koltsova, N. A. Fedosova, Yu. A. Balashkina, “New method finite difference approximation of mechanics continuous media equations”, Advances in Chemistry and Chemical Technology Journal, XXVIII:1 (2014), 64–66

[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin, “A version of essentially nonoscillatory high-order accurate difference schemes for systems of conservation laws”, Mathematical Models and Computer Simulations, 2:3 (2010), 304–316 | DOI | MR

[15] A. V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation”, Numerical methods and Programming, 11 (2010), 137–143

[16] B. Van Leer, “Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes”, Comm. Comp. Phys., 1:2 (2006), 192–206 | Zbl