Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_4_a8, author = {N. M. Kashchenko and S. A. Ishanov and S. V. Matsievsky}, title = {Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--120}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/} }
TY - JOUR AU - N. M. Kashchenko AU - S. A. Ishanov AU - S. V. Matsievsky TI - Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere JO - Matematičeskoe modelirovanie PY - 2017 SP - 113 EP - 120 VL - 29 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/ LA - ru ID - MM_2017_29_4_a8 ER -
%0 Journal Article %A N. M. Kashchenko %A S. A. Ishanov %A S. V. Matsievsky %T Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere %J Matematičeskoe modelirovanie %D 2017 %P 113-120 %V 29 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/ %G ru %F MM_2017_29_4_a8
N. M. Kashchenko; S. A. Ishanov; S. V. Matsievsky. Efficient algorithms of numerical simulation of middle-scale irregularities in the low-latitude ionosphere. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 113-120. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a8/
[1] V. Yu. Gaydukov, N. M. Kashchenko, S. V. Matsievsky i dr., “Zapusk ekvatorialnykh puzyrey putem modifikatsii E-sloya”, Geomagnetizm i Aeronomiya, 31:6 (1991), 1042–1048
[2] S. V. Matsievskii, N. M. Kashchenko, M. A. Nikitin, “Ionospheric bubbles: Ion composition, velocities of plasma motion and structure”, Radiophysics and Quantum Electronics, 32:11 (1989), 969–974 | DOI
[3] B. N. Gershman, Dinamika ionosfernoi plazmy, Nauka, M., 1974
[4] G. Gred, “O kineticheskoi teorii razrezhennykh gazov”, Mekhanika, 1952, no. 4, 71–79; No 5, 61–96; H. Grad, “On the kinetic theory of rarefied gases”, Comm. Pure Appl. Math., 2 (1949), 331–407 | DOI | MR | Zbl
[5] V. V. Rybin, V. M. Polyakov, “Ob ambipolyarnosti dvizheniy ionosfernoy plazmy”, Ionosfernye issledovaniya, 1983, no. 33, 5–44
[6] A. E. Hedin, J. E. Salah, J. V. Evans et al., “A global thermospheric model based on mass spectrometer and incoherent scatter data MSIS 1. N2 density and temperature”, J. Geophys. Res., 82:A1 (1977), 2139–2147 | DOI
[7] S. Matsievsky, N. Kashchenko, S. Ishanov, L. Zinin, “3D-simulation of equatorial F-spread: a comparing MI3 with SAMI3”, Vest. Baltiiskogo feder. univer. im. I. Kanta, 2013, no. 4, 102–105
[8] Guide to reference and standard ionosphere models, American Institute of Aeronautics and Astronautics, 2011
[9] J. D. Huba, G. Joyce, J. Krall, “Three-dimensional modeling of equatorial spread F”, Aeronomy of the Earth's atmosphere and ionosphere, IAGA Special Sopron Book Series, 2, 2011, 211–218
[10] V. V. Medvedev, S. A. Ishanov, V. I. Zenkin, “Self-consistent model of the lower ionosphere”, Geomagnetism and Aeronomy, 42:6 (2002), 745–754
[11] V. V. Medvedev, S. A. Ishanov, V. I. Zenkin, “Effect of vibrationally excited nitrogen on recombination in ionospheric plasma”, Geomagnetism and Aeronomy, 43:2 (2003), 231–238
[12] S. A. Ishanov, L. V. Zinin, S. V. Klevtsur, S. V. Matsievsky, V. I. Saveliev, “Simulation of longitudinal variations of Earth ionosphere parameters”, Matematicheskoe modelirovanie, 28:3 (2016), 64–78 | Zbl
[13] E. M. Koltsova, N. A. Fedosova, Yu. A. Balashkina, “New method finite difference approximation of mechanics continuous media equations”, Advances in Chemistry and Chemical Technology Journal, XXVIII:1 (2014), 64–66
[14] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, V. S. Chevanin, “A version of essentially nonoscillatory high-order accurate difference schemes for systems of conservation laws”, Mathematical Models and Computer Simulations, 2:3 (2010), 304–316 | DOI | MR
[15] A. V. Safronov, “Accuracy estimation and comparative analysis of difference schemes of high-order approximation”, Numerical methods and Programming, 11 (2010), 137–143
[16] B. Van Leer, “Upwind and high-resolution methods for compressible flow: from donor cell to residual-distribution schemes”, Comm. Comp. Phys., 1:2 (2006), 192–206 | Zbl