Implementation the low Mach number method for calculation of flows in the software package NOISEtte
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 101-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the development of computational techniques for simulating flows with low Mach numbers on unstructured meshes based on the Roe method and the edge-based vertexcentered higher-accuracy schemes. The techniques have been implemented in the in-house code NOISEtte. The results of predictions of inviscid compressible flow over NACA0012 airfoil with low Mach numbers are presented and analyzed. The computations are performed on structured and unstructured triangular grids.
Keywords: numerical simulation, inviscid flow, low Mach number flow, EBR scheme, unstructured mesh.
@article{MM_2017_29_4_a7,
     author = {I. V. Abalakin and V. G. Bobkov and T. K. Kozubskaya},
     title = {Implementation the low {Mach} number method for calculation of flows in the software package {NOISEtte}},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {101--112},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a7/}
}
TY  - JOUR
AU  - I. V. Abalakin
AU  - V. G. Bobkov
AU  - T. K. Kozubskaya
TI  - Implementation the low Mach number method for calculation of flows in the software package NOISEtte
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 101
EP  - 112
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a7/
LA  - ru
ID  - MM_2017_29_4_a7
ER  - 
%0 Journal Article
%A I. V. Abalakin
%A V. G. Bobkov
%A T. K. Kozubskaya
%T Implementation the low Mach number method for calculation of flows in the software package NOISEtte
%J Matematičeskoe modelirovanie
%D 2017
%P 101-112
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a7/
%G ru
%F MM_2017_29_4_a7
I. V. Abalakin; V. G. Bobkov; T. K. Kozubskaya. Implementation the low Mach number method for calculation of flows in the software package NOISEtte. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 101-112. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a7/

[1] I. V. Abalakin, P. A. Bakhvalov, A. V. Gorobets, A. P. Duben, T. K. Kozubskaya, “Parallel research code NOISEtte for large-scale CFD and CAA simulations”, Numerical Metods Programming, 13 (2012), 110–125

[2] I. V. Abalakin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, V. A. Anikin, “Numerical Simulation of Aerodynamic and Acoustic Characteristics of a Ducted Rotor”, Math. Models Comp. Simul., 8:3 (2016), 309–324 | DOI | Zbl

[3] I. V. Abalakin, V. A. Anikin, P. A. Bakhvalov, V. G. Bobkov, T. K. Kozubskaya, “Numerical Investigation of the Aerodynamic and Acoustical Properties of a Shrouded Rotor”, Fluid Dynamics, 51:3 (2016), 419–433 | DOI | DOI | MR | Zbl

[4] I. V. Abalakin, T. K. Kozubskaia, “Skhema na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennykh dlia resheniia zadach aerodinamiki i aeroakustiki na nestrukturirovannykh setkakh”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136 | MR

[5] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for prediction of near field flow region in complex aeroacoustics problems”, International J. of Aeroacoustics, 13:3–4 (2014), 207–234

[6] P. A. Bakhvalov, “Quasi One-Dimensional Reconstruction Scheme on Convex Polygonal Meshes for Solving Aeroacoustics Problems”, Math. Models Comp. Simul., 6:2 (2014), 192–202 | DOI | MR | MR | Zbl

[7] I. Abalakin, P. Bakhvalov, T. Kozubskaya, “Edge-based reconstruction schemes for unstructured tetrahedral meshes”, Intern. J. for Numerical Methods in Fluids, 81:6 (2016), 331–356 | DOI | MR

[8] E. Turkel, “Preconditioning Techniques in Computational Fluid Dynamics”, Annual Review of Fluid Mechanics, 31 (1999), 385–416 | DOI | MR

[9] A. J. Chorin, “A numerical method for solving incompressible viscous flow problems”, J. of Computational Physics, 2:1 (1967), 12–26 | DOI | MR | Zbl

[10] S. E. Rogers, D. Kwak, C. Kiris, “Steady and Unsteady Solutions of the Incompressible Navier–Stokes Equations”, AIAA Journal, 29:4 (1991), 603–610 | DOI

[11] S. E. Rogers, D. Kwak, “An upwind differencing scheme for the incompressible Navier–Stokes equations”, Applied Numerical Mathematics, 8:1 (1991), 43–64 | DOI | MR | Zbl

[12] P. L. Roe, “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. of Computational Physics, 43:2 (1981), 357–372 | DOI | MR | Zbl

[13] F. Rieper, “A low-Mach number fix for Roe's approximate Riemann solver”, J. of Computational Physics, 230:13 (2011), 5263–5287 | DOI | MR | Zbl

[14] X-s. Li, C-w. Gu, “An All-Speed Roe-type scheme and its asymptotic analysis of low Mach number behaviour”, Journal of Computational Physics, 227:10 (2008), 5144–5159 | DOI | MR | Zbl

[15] M.-S. Liou, C. J. Steffen, “A New Flux Splitting Scheme”, J. of Comp. Phys., 107:1 (1993), 23–39 | DOI | MR | Zbl

[16] M.-S. Liou, “A Sequel to AUSM: AUSM+”, J. of Comp. Phys., 129:2 (1996), 364–382 | DOI | MR | Zbl

[17] M.-S. Liou, “A sequel to AUSM, Part II: AUSM+-up for all speeds”, J. of Computational Physics, 214:1 (2006), 137–170 | DOI | MR | Zbl

[18] Y. Saad, Iterative methods for sparse linear systems, PWS Publish. Comp., Boston, 1996, 447 pp. | MR | Zbl

[19] H. Guillard, C. Viozat, “On the behaviour of upwind schemes in the low Mach number limit”, Computers and Fluids, 28:1 (1999), 63–86 | DOI | MR | Zbl

[20] M. Carrion, M. Woodgate, R. Steijl, G. Barakos, “Implementation of all-Mach Roe-type schemes in fully implicit CFD solvers-demonstration for wind turbine flows”, International Journal for Numerical Methods in Fluids, 73:8 (2013), 693–728