Regularities of thermoacoustic oscillations in Lehmann's system with a reverse movement of the coolant
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 75-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique is developed for calculations of boundaries of instability, frequencies and amplitudes of self-oscillations of the heat carrier, self-excited at its movement in the vertical channel when warmth from a source of constant power is locally brought to it. Unlike classical generators of thermoacoustic fluctuations: Rijke's pipe and Lehmann's system, it is supposed that the main stationary flow is collinear with gravity. To exclude a surge of self-oscillations of nature is assumed that the flow is created with a supercharger pressure of a monotonically decreasing characteristic. The resulting mathematical model allows theoretically to determine the conditions of self-excitation of self-oscillations under consideration and to assess the influence of various parameters on their shape.
Keywords: thermoacoustic oscillations, limit cycle, heat-pressure characteristic, instability.
@article{MM_2017_29_4_a5,
     author = {B. I. Basok and V. V. Gotsulenko},
     title = {Regularities of thermoacoustic oscillations in {Lehmann's} system with a reverse movement of the coolant},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--87},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a5/}
}
TY  - JOUR
AU  - B. I. Basok
AU  - V. V. Gotsulenko
TI  - Regularities of thermoacoustic oscillations in Lehmann's system with a reverse movement of the coolant
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 75
EP  - 87
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a5/
LA  - ru
ID  - MM_2017_29_4_a5
ER  - 
%0 Journal Article
%A B. I. Basok
%A V. V. Gotsulenko
%T Regularities of thermoacoustic oscillations in Lehmann's system with a reverse movement of the coolant
%J Matematičeskoe modelirovanie
%D 2017
%P 75-87
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a5/
%G ru
%F MM_2017_29_4_a5
B. I. Basok; V. V. Gotsulenko. Regularities of thermoacoustic oscillations in Lehmann's system with a reverse movement of the coolant. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 75-87. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a5/

[1] N. M. Beliaev, N. P. Belik, A. V. Polshin, Termoakusticheskie kolebaniia gazozhidkostnyx potokov v slozhnyx truboprovodax energeticheskikh ustanovok, Vysshaia shkola, K., 1985, 160 pp.

[2] V. M. Larinov, R. G. Zaripov, Avtokolebaniia gaza v ustanovkakh s goreniem, Kazanskii gos. tekh. universitet, Kazan, 2003, 327 pp.

[3] D. Zuker, P. Glas, G. Beneke, “Pulsaciia davleniia v vozdukhonagrevateliakh”, Chernye metally, 1980, no. 22, 20–26

[4] L. Crocco, Sin-i Cheng, Theory of Combustion Instability in Liquid Propellant Rocket Motors, Butterworths Scientific Publications, London, 1956, 200 pp.

[5] B. V. Raushenbakh, Vibratsionnoe gorenie, Fizmatgiz, M., 1961, 500 pp.

[6] V. V. Gotsulenko, “Matematicheskoe modelirovanie snizheniia amplitud kolebanii vibratsionnogo goreniia v krupnykh promyshlennykh agregatakh”, Matem. modelirovanie, 17:11 (2005), 16–24

[7] B. I. Basok, V. V. Gotsulenko, “Upravlenie avtokolebaniiami, vozbuzhdaemymi teplopodvodom”, Promyshlennaia teplotekhnika, 33:4 (2011), 72–79

[8] B. I. Basok, V. V. Gotsulenko, “Self-oscillations in a Rijke tube with receiver positioning at its entrance”, Thermophysics and Aeromechanics, 21:4 (2014), 469–478 | DOI

[9] B. I. Basok, V. V. Gotsulenko, “Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater during unstable combustion”, Thermal Engineering, 62:1 (2015), 58–63 | DOI | DOI

[10] A. V. Melkikh, V. D. Seleznev, “Self-oscillations of nonisothermal flow of viscous liquid in a channel”, High Temperature, 46:1 (2008), 91–99 | DOI

[11] V. V. Kazakevich, Avtokolebaniia (pompazh) v kompressorakh, Mashinostroenie, M., 1974, 264 pp.

[12] N. B. Vargaftik, Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei, Nauka, M., 1972, 721 pp.

[13] D. R. Merkin, Vvedenie v teoriiu ustojchivosti dvizheniia, Nauka, M., 1971, 312 pp.

[14] B. I. Basok, V. V. Gosulenko, “O mexanizmakh vozbuzhdeniia avtokolebanii v potoke gaza podvodom tepla”, Vestnik PN6IPU, 2013, no. 1, 7–24

[15] B. I. Basok, V. V. Gosulenko, “Avtokolebaniia v trube Riike pri raspolozhenii elektronagrevatelia neposredstvenno na ee vkhode”, Sibirskii zhurnal industrialnoi matematiki, 16:2 (2013), 50–61 | Zbl

[16] I. I. Berezin, N. P. Zhidkov, Metody vychislenii, Fizmatgiz, M., 1959, 620 pp.