Error solving the wave equation based on the scheme with weights
Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 21-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

Investigations have been fulfilled of wave equation approximation based on weighted difference scheme. For this purpose analytical solution has been built for semi-discretization case, when the difference spatial derivatives have been used for appropriate continuous derivatives approximation and system of second order differential equations with continuous time variable has been obtained. The analytical solution problem has been constructed for initial value problem for this system, using orthogonal system of eigenvectors for the second order difference derivatives in the spatial variables. It has been allowed to investigate approximation error, stability and to define optimal values of the weighting parameter at first for the best accuracy (of 4-th order for time step) and at second — for minimizing error for the values of the oscillation frequency for difference wave equation in comparison of continuous wave equation.
Keywords: wave equation, finite difference scheme with weighted parameters, approximation error, optimal value of weighted parameter.
@article{MM_2017_29_4_a1,
     author = {A. I. Sukhinov and A. E. Chistyakov},
     title = {Error solving the wave equation based on the scheme with weights},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {21--29},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_4_a1/}
}
TY  - JOUR
AU  - A. I. Sukhinov
AU  - A. E. Chistyakov
TI  - Error solving the wave equation based on the scheme with weights
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 21
EP  - 29
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_4_a1/
LA  - ru
ID  - MM_2017_29_4_a1
ER  - 
%0 Journal Article
%A A. I. Sukhinov
%A A. E. Chistyakov
%T Error solving the wave equation based on the scheme with weights
%J Matematičeskoe modelirovanie
%D 2017
%P 21-29
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_4_a1/
%G ru
%F MM_2017_29_4_a1
A. I. Sukhinov; A. E. Chistyakov. Error solving the wave equation based on the scheme with weights. Matematičeskoe modelirovanie, Tome 29 (2017) no. 4, pp. 21-29. http://geodesic.mathdoc.fr/item/MM_2017_29_4_a1/

[1] O. A. Ladyzhenskaia, Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973, 407 pp.

[2] A. A. Samarskii, The theory of difference schemes, Marcel Dekker, Inc., NY–Basel, 2001, 761 pp. | MR | Zbl

[3] A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, “Error estimate for diffusion equations solved by schemes with weights”, Math. Models and Computer Simulations, 6:3 (2014), 324–331 | DOI | MR

[4] A. I. Sukhinov, A. V. Shishenya, “Increasing Efficiency of Alternating Triangular Method Based on Improved Spectral Estimates”, Math. Models Comp. Simulations, 5:3 (2013), 257–265 | DOI | MR | Zbl

[5] R. V. Zhalnin, N. V. Zmitrenko, M. E. Ladonkina, V. F. Tishkin, “Chislennoe modelirovanie razvitiia neustoichivosti Rikhtmaiera-Meshkova s ispolzovaniem skhem vysokogo poriadka tochnosti”, Matem. modelirovanie, 19:10 (2007), 61–66 | Zbl

[6] A. I. Sukhinov, A. E. Chistyakov, E. F. Timofeeva, A. V. Shishenya, “Mathematical model for calculating coastal wave processes”, Mathematical Models and Computer Simulations, 5:2 (2013), 122–129 | DOI | MR | Zbl

[7] A. I. Sukhinov, A. E. Chistyakov, A. A. Semenyakina, A. V. Nikitina, “A parallel implementation of sediment transport and bottom surface reconstruction problems on the basis of higher-order difference schemes”, Vychisl. Metody Programm., 16:2 (2015), 256–267