Stochastic simulation of rarefied gas transport coefficients
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 113-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose the new stochastic algorithm for computation of the transport coefficients of rarefied gas, which is based on stochastic modeling of phase trajectories considered molecular system. This algorithm does not use the formulas of the kinetic theory of gases for the transport coefficients. The hard spheres potential is used. The number of operations is proportional to the number of used molecules. Naturally in this algorithm the conservation laws are performed. The efficiency of the algorithm is demonstrated by the example of the viscosity and diffusion coefficient of several gases. It was shown that the accuracy of the order of 1–2% can be obtained by using a relatively small number of molecules. The accuracy dependence on the number of used molecules, statistics and calculation time is analyzed.
Keywords: rarefied gas, molecular modeling, transport processes, viscosity, stochastic dynamics.
Mots-clés : diffusion
@article{MM_2017_29_3_a8,
     author = {V. Ya. Rudyak and E. V. Lezhnyov},
     title = {Stochastic simulation of rarefied gas transport coefficients},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {113--122},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/}
}
TY  - JOUR
AU  - V. Ya. Rudyak
AU  - E. V. Lezhnyov
TI  - Stochastic simulation of rarefied gas transport coefficients
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 113
EP  - 122
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/
LA  - ru
ID  - MM_2017_29_3_a8
ER  - 
%0 Journal Article
%A V. Ya. Rudyak
%A E. V. Lezhnyov
%T Stochastic simulation of rarefied gas transport coefficients
%J Matematičeskoe modelirovanie
%D 2017
%P 113-122
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/
%G ru
%F MM_2017_29_3_a8
V. Ya. Rudyak; E. V. Lezhnyov. Stochastic simulation of rarefied gas transport coefficients. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 113-122. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/

[1] Chapman S., Cowling T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1952 | MR

[2] Alder B. J., Wainwright T. E., “Phase transition for a hard sphere system”, J. Chem. Phys., 27 (1957), 1208–1209 | DOI

[3] Kubo R., “ Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–584 | DOI | MR

[4] Kubo R., Yokota M., Nakajima S., “Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances”, J. Phys. Soc. Japan, 12:11 (1957), 1203–1226 | DOI | MR

[5] Green H. S., “Theories of transport in fluids”, J. Math. Phys., 2:2 (1961), 344–348 | DOI | MR | Zbl

[6] McLennan J. A., “The formal statistical theory of transport processes”, Advan. Chem. Phys., 5 (1963), 261–317

[7] Zubarev D. N., Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974 | MR

[8] Rudyak V. Ya., Statisticheskaia teoriia dissipativnykh protsessov v gazakh i zhidkostiakh, Nauka, Novosibirsk, 1987

[9] Rudyak V. Ya., Statisticheskaia aerogidromekhanika gomogennykh i geterogennykh sred, v. 2, Gidromekhanika, NGASU, Novosibirsk, 2005

[10] Norman G. E., Stegailov V. V., “The Stochastic properties of a molecular-dynamical Lennard–Jones system in equilibrium and nonequilibrium states”, J. of Experim. and Theor. Physics, 92:5 (2001), 879–886 | DOI

[11] Norman G. E., Stegailov V. V., “Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers”, Comp. Physics Comm., 147 (2002), 678–683 | DOI | Zbl

[12] Norman G. E., Stegailov V. V., “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl

[13] Komatsu N., Abe T., “Numerical irreversibility in time reversible molecular dynamics simulation”, Physica D, 195 (2004), 391–397 | DOI | MR | Zbl

[14] Rudyak V. Ya., Ivanov D. A., “Kompiuternoe modelirovanie dinamiki konechnogo chisla vzaimodeistvuiushchikh chastits”, Doklady AN VSh Rossii, 2003, no. 1, 30–38

[15] Rudyak V. Ya., Ivanov D. A., “Dinamicheskie i stokhasticheskie svoistva otkrytoi sistemy konechnogo chisla uprugo vzaimodeistvuiushchikh chastits”, Trudy NGASU, 7:3(30) (2004), 47–58 | Zbl

[16] Rudyak V. Ya., Belkin A. A., Ivanov D. A., Egorov V. V., “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient”, High Temperature, 46:1 (2008), 30–39 | DOI | MR

[17] Bird G. A., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976 | MR | MR

[18] Ivanov M. S., Korotchenko M. A., Mikhailov G. A., Rogazinskii S. V., “Global weighted Monte Carlo method for the nonlinear Boltzmann equation”, Computational Mathematics and Mathematical Physics, 45:10 (2005), 1792–1801 | MR | Zbl

[19] Wysong I., Gimelshein S., Gimelshein N., McKeon W., Esposito F., “Reaction cross sections for two direct simulation Monte Carlo models: Accuracy and sensitivity analysis”, Phys. Fluids, 24:4 (2012), 042002 | DOI

[20] Venkattraman A., Alexeenko A. A., “Direct simulation Monte Carlo modeling of metal vapor flows in application to thin film deposition”, Vacuum, 86:11 (2012), 1748–1758 | DOI

[21] Ernst M. H., “Formal theory of transport coefficients to general order in the density”, Physica, 32:2 (1966), 209–243 | DOI | MR

[22] Khon'kin A. D., “Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman-Enskog and time correlation methods”, Theoretical and Mathematical Physics, 5:1 (1970), 1029–1037 | DOI | MR

[23] Grigorev I. S., Meilikhov E. Z. (red.), Fizicheskie velichiny. Spravochnik, Energoatomizdat, M., 1991, 1234 pp.

[24] Rudyak V. Ya., “Basic kinetic equation of a rarefied gas”, Fluid Dynamics, 24:6 (1989), 954–959 | DOI | Zbl

[25] Rudyak V. Ya., “Correlations in a finite number of particles system simulating a rarefied gas”, Fluid Dynamics, 26:6 (1991), 909–914 | DOI | Zbl

[26] Gimelshtein S. F., Rudyak V. Ya., “Simulation of rarefied gas by the small number particles system”, Sov. Tech.-Phys. Letters, 17:19 (1991), 74–77

[27] Rudyak V. Ya., Leznev E. V., “Imitatsionnyi algoritm modelirovaniia diffuzii v zhidkostiakh”, Nauchnyi Vestnik of NSTU, 2014, no. 4(57), 167–174