Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_3_a8, author = {V. Ya. Rudyak and E. V. Lezhnyov}, title = {Stochastic simulation of rarefied gas transport coefficients}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {113--122}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/} }
V. Ya. Rudyak; E. V. Lezhnyov. Stochastic simulation of rarefied gas transport coefficients. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 113-122. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a8/
[1] Chapman S., Cowling T. G., The Mathematical Theory of Non-Uniform Gases, Cambridge University Press, Cambridge, 1952 | MR
[2] Alder B. J., Wainwright T. E., “Phase transition for a hard sphere system”, J. Chem. Phys., 27 (1957), 1208–1209 | DOI
[3] Kubo R., “ Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems”, J. Phys. Soc. Japan, 12:6 (1957), 570–584 | DOI | MR
[4] Kubo R., Yokota M., Nakajima S., “Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances”, J. Phys. Soc. Japan, 12:11 (1957), 1203–1226 | DOI | MR
[5] Green H. S., “Theories of transport in fluids”, J. Math. Phys., 2:2 (1961), 344–348 | DOI | MR | Zbl
[6] McLennan J. A., “The formal statistical theory of transport processes”, Advan. Chem. Phys., 5 (1963), 261–317
[7] Zubarev D. N., Nonequilibrium Statistical Thermodynamics, Consultants Bureau, New York, 1974 | MR
[8] Rudyak V. Ya., Statisticheskaia teoriia dissipativnykh protsessov v gazakh i zhidkostiakh, Nauka, Novosibirsk, 1987
[9] Rudyak V. Ya., Statisticheskaia aerogidromekhanika gomogennykh i geterogennykh sred, v. 2, Gidromekhanika, NGASU, Novosibirsk, 2005
[10] Norman G. E., Stegailov V. V., “The Stochastic properties of a molecular-dynamical Lennard–Jones system in equilibrium and nonequilibrium states”, J. of Experim. and Theor. Physics, 92:5 (2001), 879–886 | DOI
[11] Norman G. E., Stegailov V. V., “Stochastic and dynamic properties of molecular dynamics systems: simple liquids, plasma and electrolytes, polymers”, Comp. Physics Comm., 147 (2002), 678–683 | DOI | Zbl
[12] Norman G. E., Stegailov V. V., “Stochastic theory of the classical molecular dynamics method”, Mathematical Models and Computer Simulations, 5:4 (2013), 305–333 | DOI | MR | Zbl
[13] Komatsu N., Abe T., “Numerical irreversibility in time reversible molecular dynamics simulation”, Physica D, 195 (2004), 391–397 | DOI | MR | Zbl
[14] Rudyak V. Ya., Ivanov D. A., “Kompiuternoe modelirovanie dinamiki konechnogo chisla vzaimodeistvuiushchikh chastits”, Doklady AN VSh Rossii, 2003, no. 1, 30–38
[15] Rudyak V. Ya., Ivanov D. A., “Dinamicheskie i stokhasticheskie svoistva otkrytoi sistemy konechnogo chisla uprugo vzaimodeistvuiushchikh chastits”, Trudy NGASU, 7:3(30) (2004), 47–58 | Zbl
[16] Rudyak V. Ya., Belkin A. A., Ivanov D. A., Egorov V. V., “The simulation of transport processes using the method of molecular dynamics. Self-diffusion coefficient”, High Temperature, 46:1 (2008), 30–39 | DOI | MR
[17] Bird G. A., Molecular Gas Dynamics, Clarendon Press, Oxford, 1976 | MR | MR
[18] Ivanov M. S., Korotchenko M. A., Mikhailov G. A., Rogazinskii S. V., “Global weighted Monte Carlo method for the nonlinear Boltzmann equation”, Computational Mathematics and Mathematical Physics, 45:10 (2005), 1792–1801 | MR | Zbl
[19] Wysong I., Gimelshein S., Gimelshein N., McKeon W., Esposito F., “Reaction cross sections for two direct simulation Monte Carlo models: Accuracy and sensitivity analysis”, Phys. Fluids, 24:4 (2012), 042002 | DOI
[20] Venkattraman A., Alexeenko A. A., “Direct simulation Monte Carlo modeling of metal vapor flows in application to thin film deposition”, Vacuum, 86:11 (2012), 1748–1758 | DOI
[21] Ernst M. H., “Formal theory of transport coefficients to general order in the density”, Physica, 32:2 (1966), 209–243 | DOI | MR
[22] Khon'kin A. D., “Equations for space-time and time correlation functions and proof of the equivalence of results of the Chapman-Enskog and time correlation methods”, Theoretical and Mathematical Physics, 5:1 (1970), 1029–1037 | DOI | MR
[23] Grigorev I. S., Meilikhov E. Z. (red.), Fizicheskie velichiny. Spravochnik, Energoatomizdat, M., 1991, 1234 pp.
[24] Rudyak V. Ya., “Basic kinetic equation of a rarefied gas”, Fluid Dynamics, 24:6 (1989), 954–959 | DOI | Zbl
[25] Rudyak V. Ya., “Correlations in a finite number of particles system simulating a rarefied gas”, Fluid Dynamics, 26:6 (1991), 909–914 | DOI | Zbl
[26] Gimelshtein S. F., Rudyak V. Ya., “Simulation of rarefied gas by the small number particles system”, Sov. Tech.-Phys. Letters, 17:19 (1991), 74–77
[27] Rudyak V. Ya., Leznev E. V., “Imitatsionnyi algoritm modelirovaniia diffuzii v zhidkostiakh”, Nauchnyi Vestnik of NSTU, 2014, no. 4(57), 167–174