Correction of the precision approximations of the Fermi--Dirac functions of integer index
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fermi–Dirac functions of integer index are widely used in problems of electronic transport in dense substances. Polynomial approximations were constructed for its quick computation. Such coefficients are founded for functions of index $1, 2, 3$, which provide ratio error $2\cdot10^{-16}$ with $9$ free parametrs. In this work we used C++ boost::multiprecision library, which allows to calculate with free number of digits. Precision of previously obtained formulas brought to $\sim 5\cdot10^{-18}$ and the same formula has been built for the index $k=4$. It is also shown that simple global formulas, consisting of small number of parameters, reasonably describe the order of value of the functions for all values of the argument and can be used for estimations.
Keywords: Fermi–Dirac functions, precision approximations, rational approximation, estimated global approximations.
@article{MM_2017_29_3_a3,
     author = {N. N. Kalitkin and S. A. Kolganov},
     title = {Correction of the precision approximations of the {Fermi--Dirac} functions of integer index},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {42--50},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a3/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - S. A. Kolganov
TI  - Correction of the precision approximations of the Fermi--Dirac functions of integer index
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 42
EP  - 50
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a3/
LA  - ru
ID  - MM_2017_29_3_a3
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A S. A. Kolganov
%T Correction of the precision approximations of the Fermi--Dirac functions of integer index
%J Matematičeskoe modelirovanie
%D 2017
%P 42-50
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a3/
%G ru
%F MM_2017_29_3_a3
N. N. Kalitkin; S. A. Kolganov. Correction of the precision approximations of the Fermi--Dirac functions of integer index. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 42-50. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a3/

[1] E. C. Stoner, J. McDougall, “The computation of Fermi-Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237:773 (1938), 67–104 | DOI

[2] H. C. Thacher Jr, W. J. Cody, “Rational Chebyshev approximations for Fermi–Dirac integrals of orders -1/2, 1/2 and 3/2”, Mathematics of Computation, 1967, 30–40 | MR | Zbl

[3] M. Lundstrom, R. Kim, Notes on Fermi–Dirac integrals, 2008, arXiv: 0811.0116

[4] N. N. Kalitkin, “About computation of functions the Fermi–Dirac”, Magazine of computational mathematics and mathematical physics, 8:1 (1968), 173–175

[5] L. D. Cloutman, “Numerical evaluation of the Fermi–Dirac integrals”, The Astrophysical Journal Supplement Series, 71 (1989), 677 | DOI

[6] M. Goano, “Algorithm 745: computation of the complete and incomplete Fermi–Dirac integral”, ACM Transactions on Mathematical Software (TOMS), 21:3 (1995), 221–232 | DOI | Zbl

[7] A. J. MacLeod, “Algorithm 779: Fermi-Dirac functions of order -1/2, 1/2, 3/2, 5/2”, ACM Transactions on Mathematical Software (TOMS), 24:1 (1998), 1–12 | DOI | Zbl

[8] N. N. Kalitkin, S. A. Kolganov, “Pretsizionnye approksimatsii funktsii Fermi–Diraka tselogo indeksa”, Matem. modelirovanie, 28:3 (2016), 23–32

[9] N. N. Kalitkin, I. V. Ritus, “Smooth approximations of functions the Fermi-Dirac”, Keldysh Institute preprints, 1981, 72, 9 pp.

[10] N. N. Kalitkin, I. V. Ritus, “Smooth approximation of Fermi–Dirac functions”, USSR Computational Mathematics and Mathematical Physics, 26:2 (1986), 87–89 | DOI | MR