To calculation by the Godunov method of multidimensional currents multi-speed heterogeneous medium
Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 29-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified Godunov's method with the linearized Riemannian solver intended for integration of hyperbolic system of the equations of multi-speed heterogeneous medium on the structured curvilinear grid is described Prandtl–Mayer current for gas-liquid mix is computed using this method. The numerical decision is compared with automodel decision.
Keywords: multi-speed multicomponent mix, hyperbolic systems of the equations, Godunov's method, linearized Riemannian solver, current Prandtl–Mayer.
@article{MM_2017_29_3_a2,
     author = {V. S. Surov},
     title = {To calculation by the {Godunov} method of multidimensional currents multi-speed heterogeneous medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {29--41},
     publisher = {mathdoc},
     volume = {29},
     number = {3},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_3_a2/}
}
TY  - JOUR
AU  - V. S. Surov
TI  - To calculation by the Godunov method of multidimensional currents multi-speed heterogeneous medium
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 29
EP  - 41
VL  - 29
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_3_a2/
LA  - ru
ID  - MM_2017_29_3_a2
ER  - 
%0 Journal Article
%A V. S. Surov
%T To calculation by the Godunov method of multidimensional currents multi-speed heterogeneous medium
%J Matematičeskoe modelirovanie
%D 2017
%P 29-41
%V 29
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_3_a2/
%G ru
%F MM_2017_29_3_a2
V. S. Surov. To calculation by the Godunov method of multidimensional currents multi-speed heterogeneous medium. Matematičeskoe modelirovanie, Tome 29 (2017) no. 3, pp. 29-41. http://geodesic.mathdoc.fr/item/MM_2017_29_3_a2/

[1] H. Stewart, B. Wendroff, “Two-phase flow: models and methods”, J. Comput. Phys., 56 (1984), 363–409 | DOI | MR | Zbl

[2] V. S. Surov, “Hyperbolic models in the mechanics of heterogeneous media”, Comput. Mathematics and Mathematical Physics, 54:1 (2014), 148–157 | DOI | DOI | MR | Zbl

[3] V. S. Surov, “Hyperbolic model of a multivelocity heterogeneous medium”, Journal of Engineering Physics and Thermophysics, 85:3 (2012), 530–538 | DOI

[4] V. S. Surov, “Latent waves in heterogeneous media”, Journal of Engineering Physics and Thermophysics, 87:6 (2014), 1463–1468 | DOI

[5] A. A. Gubaidullin, D. N. Dudko, S. F. Urmancheev, “Vozdeistvie vozdushnykh udarnykh voln na pregrady, pokrytye poristym sloem”, Vychislitelnye Tekhnologii, 6:3 (2001), 7–20

[6] M. Baer, J. Nunziato, “A two-phase mixture theory for deflagration-to-detonation transition (DDT) in reactive granular materials”, Int. J. Multiphase Flow, 12 (1986), 861–889 | DOI | Zbl

[7] V. F. Kuropatenko, “Model of a Multicomponent Medium”, Doklady Physics, 50:8 (2005), 423–425 | DOI

[8] D. L. Nguyen, E. R. F. Winter, M. Greiner, “Sonic velocity in two-phase systems”, Int. J. Multiphase Flow, 7 (1981), 311–320 | DOI

[9] G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw Hill, New York, 1969

[10] S.-J. Lee, K.-S. Chang, K. Kim, “Pressure wave speeds from the characteristics of two fluids, two-phase hyperbolic equation systems”, Int. J. Multiphase Flow, 24 (1998), 855–866 | DOI

[11] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976

[12] V. S. Surov, “On equations of a one-velocity heterogeneous medium”, Journal of Engineering Physics and Thermophysics, 82:1 (2009), 75–84

[13] V. S. Surov, “Godunov method for calculating multicomponent heterogeneous medium flows”, Journal of Engineering Physics and Thermophysics, 87:2 (2014), 376–384 | DOI

[14] V. S. Surov, “The Riemann problem for the multivelocity model of a multicomponent medium”, Journal of Engineering Physics and Thermophysics, 86:4 (2013), 926–934 | DOI

[15] E. F. Toro, “Riemann solvers with evolved initial condition”, Int. Journal for Numerical Methods in Fluids, 52 (2006), 433–453 | DOI | MR | Zbl

[16] V. S. Surov, “Prandtl–Mayer flow for a multicomponent mixture”, Journal of Engineering Physics and Thermophysics, 86:3 (2013), 587–592 | DOI