Features of overset meshes methodology on unstructed grids
Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 106-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main steps of Overset Grids technique are being discussed. The emphasis is on the peculiarities of the implementation of algorithms on grids consisting of arbitrary polyhedral cells. The methods of constructing countable regions of arbitrary shape are being offered. The operability and efficiency are being demonstrated by cases with available experimental data.
Keywords: unstructed meshes, Chimera grids, numerical simulation.
Mots-clés : interpolation pattern
@article{MM_2017_29_2_a7,
     author = {Yu. N. Deryugin and A. S. Sarazov and R. N. Zhuchkov},
     title = {Features of overset meshes methodology on unstructed grids},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {106--118},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_2_a7/}
}
TY  - JOUR
AU  - Yu. N. Deryugin
AU  - A. S. Sarazov
AU  - R. N. Zhuchkov
TI  - Features of overset meshes methodology on unstructed grids
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 106
EP  - 118
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_2_a7/
LA  - ru
ID  - MM_2017_29_2_a7
ER  - 
%0 Journal Article
%A Yu. N. Deryugin
%A A. S. Sarazov
%A R. N. Zhuchkov
%T Features of overset meshes methodology on unstructed grids
%J Matematičeskoe modelirovanie
%D 2017
%P 106-118
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_2_a7/
%G ru
%F MM_2017_29_2_a7
Yu. N. Deryugin; A. S. Sarazov; R. N. Zhuchkov. Features of overset meshes methodology on unstructed grids. Matematičeskoe modelirovanie, Tome 29 (2017) no. 2, pp. 106-118. http://geodesic.mathdoc.fr/item/MM_2017_29_2_a7/

[1] Mazhukin V. I., Samarskii A. A., Kastelianos O., Shapranov A. V., “Metod dinamicheskoi adaptatsii dlia nestatsionarnykh zadach s bolshimi gradientami”, Matematicheskoe modelirovanie, 5:4 (1993), 32–56

[2] Godunov S. K., Prokopov G. P., “The use of moving meshes in gas-dynamical computations”, USSR Computational Mathematics and Mathematical Physics, 12:2 (1972), 182–195 | DOI | Zbl

[3] Benek J. A., Buning P. G., Steger J. L., A 3-D Chimera Grid Embedding Technique, AIAA Paper, No 85-1523, 1985

[4] Benek J. A., Donegan T. L., Suhs N. E., Extended Chimera Grid Embedding Scheme With Application to Viscous Flow, AIAA Paper, No 87-1126, 1987

[5] Lee K. R., Park J. H., Kim K. H., “High-Order Interpolation Method for Overset Grid Based on Finite Volume Method”, AIAA Journal, 49:7 (2011), 1387–1398 | DOI

[6] Hahn S., Iaccarino G., Ananthan S., Baeder D., Extension of CHIMPS for Unstructed Overset Simulation and Higher-Order Interpolation, AIAA Paper, 2009-3999

[7] Tang H., Jones S. C., Sotiropoulos F., “An Overset Grid Method for 3D unsteady incompressible flows”, Journal of Computational Physics, 191:2 (2003), 567–600 | DOI | Zbl

[8] Berger M. J., “On conservation at grid interfaces”, SIAM J. Numer. Anal., 24 (1987), 967–984 | DOI | MR | Zbl

[9] Wang Z. J., Yang H. Q., A Unified Conservative Zonal Interface Treatment for Arbitrarily Patched and Overlapped Grids, AIAA Paper, 1994-0320

[10] Jung M. S., Kwon O. J., A Conservative Overset Mesh Scheme via Intergrid Boundary Reconnection on Unstructured Meshes, AIAA Paper, 2009-3536

[11] Kozelkov A. S., Deriugin Iu. N., Zelenskii D. K., Polishchuk S. N., Lashkin S. V., Zhuchkov R. N., Glazunov V. A., Iatsevich S. V., Kurulin V. V., Mnogofunktsionalnyi paket programm LOGOS: fizikomatematicheskie modeli rascheta zadach aero-, gidrodinamiki i teplomassoperenosa, preprint No 111, RFIaTs-VNIIEF, Sarov, 2013, 67 pp.

[12] Wang Z. J., Parthasarathy V., “A Fully Automated Chimera Methodology for Multiple Moving Body Problems”, International Journal for Numerical Methods in Fluids, 33:7 (2000), 919–938 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[13] Bonet J., Peraire J., “An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems”, Intern. Journal for Numerical Methods in Engineering, 31 (1991), 1–17 | DOI | MR | Zbl

[14] Wentz W. H., Seetharam H. C., Development of a Fowler Flap System for High Performance General Aviation Airfoil, NASA CR-2443, 1974

[15] Fox J. H., Generic Wing, Pylon, and Moving Finned Store, Verification and Validation Data for Computational Unsteady Aerodynamics, RTO-TR-26, St. Joseph Ottawa/Hill, Canada, Oct. 2000