The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas
Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 109-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of diffraction of a monochromatic acoustic wave on a system of nonintersecting bodies, screens and antennas is considered. A boundary value problem for the Helmholtz equation is reduced to a system of integral equations on manifolds of different dimensions. We use the Galerkin method with a choice of piecewise constant basis functions to find the approximate solutions of the resulting system. We use subhierarchical approach to solve the problem of diffraction by scatterers irregular shapes. A series of computing experiments is conducted; the calculation results are presented in the graphic form.
Keywords: problem of diffraction, acoustic waves, Helmholtz equation, Galerkin method, subhierarchical approach.
@article{MM_2017_29_1_a7,
     author = {Yu. G. Smirnov and M. Yu. Medvedik and A. A. Tsupak and M. A. Moskaleva},
     title = {The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {109--118},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a7/}
}
TY  - JOUR
AU  - Yu. G. Smirnov
AU  - M. Yu. Medvedik
AU  - A. A. Tsupak
AU  - M. A. Moskaleva
TI  - The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 109
EP  - 118
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a7/
LA  - ru
ID  - MM_2017_29_1_a7
ER  - 
%0 Journal Article
%A Yu. G. Smirnov
%A M. Yu. Medvedik
%A A. A. Tsupak
%A M. A. Moskaleva
%T The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas
%J Matematičeskoe modelirovanie
%D 2017
%P 109-118
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a7/
%G ru
%F MM_2017_29_1_a7
Yu. G. Smirnov; M. Yu. Medvedik; A. A. Tsupak; M. A. Moskaleva. The problem of diffraction of acoustic waves on a system of bodyes, screens and antennas. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 109-118. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a7/

[1] D. Colton, R. Kress, Integral equation methods in scattering theory, John Wiley Sons, NY., 1983, 271 pp. | MR | MR | Zbl

[2] M. Durand, “Layer potentials and boundary value problems for the Helmholz equation in the complement of a thin obstacle”, Math. Meth. Appl. Sci., 5 (1983), 389–421 | DOI | MR | Zbl

[3] M. A. Costabel, E. J. Stephan, “A direct boundary integral equation method for transmission problems”, Math. Anal. Appl., 106 (1985), 367–413 | DOI | MR | Zbl

[4] I. V. Andronov, “Calculation of diffraction by strongly elongated bodies of revolution”, Acoustical physics, 58:1 (2012), 22–29 | DOI

[5] A. A. Osipov, K. S. Reent, “Mathematical simulation of sound propagation in a flow channel with impedance walls”, Acoustical physics, 58:4 (2012), 467–480 | DOI

[6] S. A. Manenkov, “A new version of the modified method of discrete sources in application to the problem of diffraction by a body of revolution”, Acoustical physics, 60:2 (2014), 127–133 | DOI | DOI

[7] M. Yu. Medvedik, Yu. G. Smirnov, A. A. Tsupak, “Scalar problem of plane wave diffraction by a system of nonintersecting screens and inhomogeneous bodies”, Computational Mathematics and Mathematical Physics, 54:8 (2014), 1280–1292 | DOI | MR | Zbl

[8] Iu. G. Smirnov, M. Iu. Medvedik, A. A. Tsupak, M. A. Maksimova, “Chislennoe reshenie zadachi diffraktsii elektromagnitnyh voln na sisteme tel i ekranov”, Izvestiia vysshih uchebnyh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2014, no. 3, 114–134

[9] V. A. Strishkov, “Asymptotic correctness of the integral equations of electrodynamics in the thin-wire approximation”, Computational Mathematics and Mathematical Physics, 29:2 (1989), 90–93 | DOI | MR

[10] M. Iu. Medvedik, “Primenenie subierarkhicheskogo metoda v zadachakh elektrodinamiki”, Vychislitelnye metody i programmirovanie, 13 (2012), 87–97