Using high-accuracy aeroacoustic schemes on regular grids for simulation of viscous flows
Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 63-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present study the high-accuracy finite-difference schemes which are widely used in computational aeroacoustics and referred to as dispersion-relation-preserving (DRP) schemes are implemented to simulation of viscous flows. The main result consists of the construction and verification of numerical boundary conditions. This includes conditions on a solid wall, on an artificial boundary, and an interface between them. A number of test problems have been calculated: a dissipation of the Lamb–Oseen vortex, the Taylor–Green vortex decay in both 2D and 3D, and plane channel flows in the infinite and semi-infinite (open outlet) cases.
Keywords: Navier–Stokes equations, nonreflecting boundary conditions, finite differences, dispersion-relation-preserving scheme, Taylor–Green vortex.
Mots-clés : Poiseuille flow
@article{MM_2017_29_1_a4,
     author = {A. V. Alexandrov and L. W. Dorodnicyn},
     title = {Using high-accuracy aeroacoustic schemes on regular grids for simulation of viscous flows},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--83},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a4/}
}
TY  - JOUR
AU  - A. V. Alexandrov
AU  - L. W. Dorodnicyn
TI  - Using high-accuracy aeroacoustic schemes on regular grids for simulation of viscous flows
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 63
EP  - 83
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_1_a4/
LA  - ru
ID  - MM_2017_29_1_a4
ER  - 
%0 Journal Article
%A A. V. Alexandrov
%A L. W. Dorodnicyn
%T Using high-accuracy aeroacoustic schemes on regular grids for simulation of viscous flows
%J Matematičeskoe modelirovanie
%D 2017
%P 63-83
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_1_a4/
%G ru
%F MM_2017_29_1_a4
A. V. Alexandrov; L. W. Dorodnicyn. Using high-accuracy aeroacoustic schemes on regular grids for simulation of viscous flows. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 63-83. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a4/

[1] C. K. W. Tam, J. C. Webb, “Dispersion-relation-preserving finite difference schemes for computational acoustics”, J. Comput. Phys., 107 (1993), 262–281 | DOI | MR | Zbl

[2] C. Bogey, C. Bailly, “A family of low dispersive and low dissipative explicit schemes for flow and noise computations”, J. Comput. Phys., 194 (2004), 194–214 | DOI | Zbl

[3] C. K. W. Tam, “Computational aeroacoustics: An overview of computational challenges and applications”, Int. J. Comput. Fluid Dynamics, 18 (2004), 547–567 | DOI | MR | Zbl

[4] C. K. W. Tam, Zh. Dong, “Wall boundary conditions for high-order finite-difference schemes in computational aeroacoustics”, Theor. Comput. Fluid Dynamics, 6 (1994), 303–322 | DOI | Zbl

[5] C. Bogey, N. Cacqueray, C. Bailly, “A shock-capturing methodology based on adaptive spatial filtering for high-order non-linear computations”, J. Comput. Phys., 228 (2009), 1447–1465 | DOI | MR | Zbl

[6] J. Berland, C. Bogey, O. Marsden, C. Bailly, “High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems”, J. Comput. Phys., 224 (2007), 637–662 | DOI | MR | Zbl

[7] J. W. Kim, “Optimised boundary compact finite difference schemes for computational aeroacoustics”, J. Comput. Phys., 225 (2007), 995–1019 | DOI | MR | Zbl

[8] L. W. Dorodnicyn, “Artificial boundary conditions for high-accuracy aeroacoustic algorithms”, SIAM J. Scientific Computing, 32:4 (2010), 1950–1979 | DOI | MR | Zbl

[9] L. V. Dorodnitsyn, “Raznostnye granichnye uslovia vysokoi tochnosti dlia dvumernykh zadach aeroakustiki”, Matematicheskoe modelirovanie, 23:11 (2011), 131–155

[10] M. B. Giles, “Nonreflecting boundary conditions for Euler equation calculations”, AIAA J., 28 (1990), 2050–2058 | DOI

[11] G. W. Hedstrom, “Nonreflecting boundary conditions for nonlinear hyperbolic systems”, J. Comput. Phys., 30:2 (1979), 222–237 | DOI | MR | Zbl

[12] L. V. Dorodnitsyn, “Transparent boundary conditions for systems of equations of gas dynamics”, Computational Mathematics and Mathematical Physics, 42:4 (2002), 499–525 | MR | Zbl

[13] L. V. Dorodnitsyn, “Artificial boundary conditions for numerical simulation of subsonic gas flows”, Computational Mathematics and Mathematical Physics, 45:7 (2005), 1209–1234 | MR | Zbl

[14] M. Calvo, J. M. Franco, L. Randez, “A new minimum storage Runge–Kutta scheme for computational acoustics”, J. Comput. Phys., 211 (2004), 1–12 | DOI | MR

[15] B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comput., 31 (1977), 629–651 | DOI | MR | Zbl

[16] L. V. Dorodnicyn, “Nonreflecting boundary conditions and numerical simulation of external flows”, Computational Mathematics and Mathematical Physics, 51:1 (2011), 143–159 | DOI | MR | Zbl

[17] L. V. Dorodnitsyn, “Nonreflecting boundary conditions for one-dimensional problems of viscous gas dynamics”, Computational Mathematics and Modeling, 23:4 (2012), 408–438 | DOI | MR | Zbl

[18] M. Brachet, D. Meiron, S. Orszag, et al., “Small-scale structure of the Taylor–Green vortex”, J. Fluid Mech., 130 (1983), 411–452 | DOI | Zbl

[19] Problem C3.5 Direct numerical simulation of the Taylor-Green vortex at $\mathrm{Re} = 1600$, http://www.as.dlr.de/hiocfd/case_c3.5.pdf

[20] T. G. Elizarova, I. A. Shirokov, “Laminarnyi i turbulentnyi rezhimy raspada vikhria Teilora–Grina”, Keldysh Institute preprints, 2013, 063, 16 pp.

[21] C. Cercignani, M. Lampis, S. Lorenzani, “Variational approach to gas flows in microchannels”, Phys. Fluids, 16:9 (2004), 3426–3437 | DOI | MR

[22] Kun Xu, Zhihui Li, “Microchannel flow in the slip regime: gas-kinetic BGK-Burnett solutions”, J. Fluid Mech., 513 (2004), 87–110 | DOI | MR | Zbl

[23] C. R. Illingworth, “Some solutions of the equations of flow of a viscous compressible fluid”, Math. Proc. Cambridge Philosophical Society, 46 (1950), 469–478 | DOI | MR