@article{MM_2017_29_1_a1,
author = {J. E. Egrashkina and N. O. Sedova},
title = {On approximate {Takagi{\textendash}Sugeno} linear representations of nonlinear functions},
journal = {Matemati\v{c}eskoe modelirovanie},
pages = {20--32},
year = {2017},
volume = {29},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MM_2017_29_1_a1/}
}
J. E. Egrashkina; N. O. Sedova. On approximate Takagi–Sugeno linear representations of nonlinear functions. Matematičeskoe modelirovanie, Tome 29 (2017) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/MM_2017_29_1_a1/
[1] K. Tanaka, N. O. Wang, Fuzzy control systems design and analysis: a linear matrix inequality approach, Wiley, N.Y., 2001, 305 pp.
[2] Zh. E. Egrashkina, “Tochnoe predstavlenie nelineinykh sistem obyknovennykh differentsialnykh uravnenii v vide nechetkikh lineinykh modelei Takagi–Sugeno”, Nauchno-tekhnicheskii vestnik Povolzhia, 2014, no. 2, 16–24
[3] M. Hamdy, I. Hamdan, “Robust fuzzy output feedback controller for affine nonlinear systems via TS fuzzy bilinear model: CSTR benchmark”, ISA Transactions, 2015, July, 1–8
[4] B. M. Al-Hadithi, A. Jimenez, F. Matia, “A new approach to fuzzy estimation of Takagi-Sugeno model and its applications to optimal control for nonlinear systems”, Applied Soft Computing, 12:1 (2012), 280–290 | DOI
[5] P. Baranyi, “TP Model Transformation as a Manipulation Tool for QLPV Analysis and Design”, Asian Journal of Control, 17:2, March (2015), 497–507 | DOI | MR | Zbl