Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_12_a6, author = {D. V. Sadin}, title = {Schemes with customizable dissipative properties as applied to gas-suspensions flow simulation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {89--104}, publisher = {mathdoc}, volume = {29}, number = {12}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a6/} }
TY - JOUR AU - D. V. Sadin TI - Schemes with customizable dissipative properties as applied to gas-suspensions flow simulation JO - Matematičeskoe modelirovanie PY - 2017 SP - 89 EP - 104 VL - 29 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a6/ LA - ru ID - MM_2017_29_12_a6 ER -
D. V. Sadin. Schemes with customizable dissipative properties as applied to gas-suspensions flow simulation. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 89-104. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a6/
[1] C.T. Crowe, J.D. Schwarzkopf, M. Sommerfeld, Y. Tsuji, Multiphase flows with droplets and particles, CRC Press, New York, 2012, 487 pp.
[2] A.P. Alkhimov, S.V. Klinkov, V.F. Kosarev, V.M. Fomin, Kholodnoe gazodinamicheskoe napylenie. Teoriia i praktika, ed. V.M. Fomin, Fizmatlit, M., 2010, 536 pp.
[3] R.I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, 2, Nauka, M., 1987
[4] D. Gidaspow, Multiphase Flow and Fluidization, Academic Press, New York, 1994, 467 pp. | MR | Zbl
[5] L.A. Klebanov, A.E. Kroshilin, B.I. Nigmatulin, R.I. Nigmatulin, “On the hyperbolicity, stability and correctness of the Cauchy problem for the system of equations of two-speed motion of two-phase media”, Journal of Applied Mathematics and Mechanics, 46:1 (1982), 66–74 | DOI | MR
[6] J. Hudson, D. Harris, “A high resolution scheme for Eulerian gas-solid two-phase isentropic flow”, Journal of Computational Physics, 216 (2006), 494–525 | DOI | MR | Zbl
[7] B.L. Rozhdestvenskii, N.N. Yanenko, Sistemy kvazilineinykh uravnenii, Nauka, M., 1978, 687 pp.
[8] G.A. Ruev, B.L. Rozhdestvenskii, V.M. Fomin, N.N. Yanenko, “Zakony sokhraneniia system uravnenii dvukhfaznykh sred”, Doklady akademii nauk SSSR, 254:2 (1980), 288–293 | Zbl
[9] D.V. Sadin, “A Modified Large-Particle Method for Calculating Unsteady Gas Flows in a Porous Medium”, Comput. Mathem. and Mathematical Physics, 36:10 (1996), 1453–1458 | MR | Zbl
[10] D.V. Sadin, “A Method for Computing Heterogeneous Wave Flows with Intense Phase Interaction”, Computational Mathematics and Mathematical Physics, 38:6 (1998), 987–993 | MR | Zbl
[11] R. Saurel, R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, Journal of Computational Physics, 150:2 (1999), 425–467 | DOI | MR | Zbl
[12] D.V. Sadin, “On stiff systems of partial differential equations for motion of heterogeneous media”, Mathematical Models and Computer Simulations, 14:11 (2002), 43–53 | Zbl
[13] R. Saurel, O. Le Metayer, J. Massoni, S. Gavrilyuk, “Shock jump relations for multiphase mixtures with stiff mechanical relaxation”, Shock Waves, 16:3 (2007), 209–232 | DOI | Zbl
[14] R. Saurel, F. Petitpas, R.A. Berry, “Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures”, Journal of Computational Physics, 228:5 (2009), 1678–1712 | DOI | MR | Zbl
[15] D.V. Sadin, “TVD Scheme for Stiff Problems of Wave Dynamics of Heterogeneous Media of Nonhyperbolic Nonconservative Type”, Computational Mathematics and Mathematical Physics, 56:12 (2016), 2068–2078 | DOI | MR | Zbl
[16] D.V. Sadin, “On the Convergence of a Certain Class of Difference Schemes for the Equations of Unsteady Gas Motion in a Disperse Medium”, Computational Mathematics and Mathematical Physics, 38:9 (1998), 1508–1513 | MR | Zbl
[17] R. Christiansen, “High resolution hydrodynamics methods using artificial viscosity”, Voprosy atomnoi nauki i tekhniki. Ser. Matem. modelir. fizicheskikh protsessov, 1996, no. 4, 89–93
[18] I.V. Popov, I.V. Friazinov, “Konechno-raznostnyi metod resheniia uravnenii gazovoi dinamiki s vvedeniem adaptivnoi iskustvennoi viazkosti”, Matem. modelirovanie, 20:8 (2008), 48–60
[19] A. Kurganov, Y. Liu, “New adaptive artificial viscosity method for hyperbolic systems of conservation laws”, Journal of Computational Physics, 231 (2012), 8114–8132 | DOI | MR | Zbl
[20] R. Liska, B. Wendroff, “Comparison of several difference schemes on 1D and 2D test problems for the Euler equations”, SIAM Journal on Scientific Computing, 25:3 (2003), 995–1017 | DOI | MR | Zbl
[21] T.G. Elizarova, E.V. Shil'nikov, “Capabilities of a quasi-gasdynamic algorithm as applied to inviscid gas flow simulation”, Comput. Mathem. and Math. Physics, 49:3 (2009), 532–548 | DOI | MR | Zbl
[22] T.G. Elizarova, E.V. Shil'nikov, “Erratum to: “Capabilities of a Quasi-Gasdynamic Algorithm as Applied to Inviscid Gas Flow Simulation””, Computational Mathematics and Mathematical Physics, 50:4 (2010), 747–748 | DOI | MR
[23] M.N. Mikhailovskaya, B.V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Mathematics and Mathem. Physics, 52:4 (2012), 578–600 | DOI | MR | Zbl
[24] P. Woodward, P. Colella, “The numerical simulation of two-dimensional fluid flow with strong shocks”, Journal of Computational Physics, 54:1 (1984), 115–173 | DOI | MR | Zbl
[25] C. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes II”, Journal of Computational Physics, 83 (1989), 32–78 | DOI | MR | Zbl
[26] D.V. Sadin, V.M. Varvarskii, “Specific features of unsteady exhaustion of a gas-particle medium into vacuum”, Journal of Applied Mechanics and Technical Physics, 57:3 (2016), 422–431 | DOI
[27] D.V. Sadin, S.D. Lyubarskii, Yu.A. Gravchenko, “Features of an Underexpanded Pulsed Impact Gas-Dispersed Jet with a High Particle Concentration”, Technical Physics, 87:1 (2017), 22–26 | DOI