Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method
Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 147-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we present the system of nonlinear equations of multifractal dynamics (MFD) model which describes instantaneous cardiac rhythm (ICR) in the regular and jump areas. We present the numerical solution of this system of nonlinear equations obtained by Newton's method, and the ICR parameter values of MFD model based on the data of Holter monitoring (HM) of a patient of the Tver Cardiology Health Center. It was demonstrated that the necessary condition for ICR jump in the above case is the proximity of pre-jump ICR fractal dimension $D$ to the fractal dimension value in bifurcation point $D_b$ which was calculated in the MFD model.
Keywords: instantaneous heart rate, multifractal dynamics model, instantaneous heart rate jumps, regularized Newton method.
Mots-clés : bifurcation catastrophes
@article{MM_2017_29_12_a10,
     author = {S. A. Mikheev and V. N. Ryzikov and V. P. Tsvetkov and I. V. Tsvetkov},
     title = {Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized {Newton's} method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {147--156},
     publisher = {mathdoc},
     volume = {29},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a10/}
}
TY  - JOUR
AU  - S. A. Mikheev
AU  - V. N. Ryzikov
AU  - V. P. Tsvetkov
AU  - I. V. Tsvetkov
TI  - Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 147
EP  - 156
VL  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a10/
LA  - ru
ID  - MM_2017_29_12_a10
ER  - 
%0 Journal Article
%A S. A. Mikheev
%A V. N. Ryzikov
%A V. P. Tsvetkov
%A I. V. Tsvetkov
%T Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method
%J Matematičeskoe modelirovanie
%D 2017
%P 147-156
%V 29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_12_a10/
%G ru
%F MM_2017_29_12_a10
S. A. Mikheev; V. N. Ryzikov; V. P. Tsvetkov; I. V. Tsvetkov. Determination of instaneous cardiac rhythm parameters in multifractal dynamics model by regularized Newton's method. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 147-156. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a10/

[1] A.N. Kudinov, D.Y. Lebedev, V.P. Tsvetkov, I. V. Tsvetkov, “Mathematical model of the multifractal dynamics and analysis of heart rates”, Mathematical Models and Computer Simulations, 7:3 (2015), 214–221 | DOI | MR | Zbl

[2] A.P. Ivanov, A.N. Kudinov, D.Y. Lebedev, V.P. Tsvetkov, I.V. Tsvetkov, “Analysis of Instantaneous Cardiac Rhythm in a Model of Multifractal Dynamics Based on Holter Monitoring”, Mathematical Models and Computer Simulations, 8:1 (2016), 7–18 | DOI | MR

[3] A.N. Kudinov, D.Iu. Lebedev, A.P. Ivanov, V.N. Ryzhikov, V.P. Tsvetkov, I.V. Tsvetkov, “Samopodobie skaterogrammy mgnovennogo serdechnogo ritma”, Vestnik Tverskogo Gosudarstvennogo Universiteta. Ser. Prikladnaia matematika, 2014, no. 3, 105–114

[4] A.N. Kudinov, D. Iu. Lebedev, V.N. Ryzikov, V.P. Tsvetkov, I.V. Tsvetkov, A.P. Ivanov, “Samopodobie i fraktalnaia razmernost skaterogrammy mgnovennogo serdechnogo ritma”, Naukoemkie tehnologii, 2015, no. 5, 57–63

[5] A.P. Ivanov, A.N. Kudinov, D.Iu. Lebedev, S.A. Mikheev, V.P. Tsvetkov, I.V. Tsvetkov, “Bifurkatsionnye katastrofy mgnovennogo serdechnogo ritma v modeli multifraktalnoi dinamiki”, Vestnik Tverskogo Gosudarstvennogo Universiteta. Ser. Prikladnaia matematika, 2016, no. 1, 63–73

[6] A.P. Ivanov, A.N. Kudinov, D.Iu. Lebedev, S.A. Mikheev, V.P. Tsvetkov, I.V. Tsvetkov, “Vozmozhnosti vizualnoi otsenki aritmii pri kholterovskom monitorirovanii EKG: mesto trekhmernoi skatterografii v analize variabelnosti ritma serdtsa”, Transliatsionnaia meditsina, 2:6 (2015), 5–10

[7] V.V. Ermakov, N.N. Kalitkin, “Optimalnyi zhag i reguliarizatsia metoda Niutona”, Zhurn. vychil. matem. i mat. fiz., 21:2 (1981), 419–497

[8] E.V. Bespalko, S.A. Mikheev, I.V. Puzynin, V.P. Tsvetkov, “Matematicheskaia model gravitiruiushchei bystrovrashchaiushcheisia sverkhplotnoi konfiguratsii s realisticheskimi uravneniiami sostoianiia”, Matematicheskoe modelirovanie, 18:3 (2006), 103–119