Compact difference scheme for the differential equation with piecewise-constant coefficient
Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 16-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present compact difference approximation on equidistant grid for the Dirichlet problem for the second order divergent type linear differential equation with piecewise-constant coefficient and discontinuous right hand side. Our numerical experiments demonstrate essential advantage of the scheme in comparison with the classic divergence scheme. We obtain same results for the Sturm–Liouville problem. The Richardson extrapolation method improves the order of accuracy in both cases.
Keywords: compact difference scheme, divergence difference scheme, stencil, discontinuous coefficient, double-sweep, order of convergence, Richardson extrapolation.
@article{MM_2017_29_12_a1,
     author = {V. A. Gordin and E. A. Tsymbalov},
     title = {Compact difference scheme for the differential equation with piecewise-constant coefficient},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {16--28},
     publisher = {mathdoc},
     volume = {29},
     number = {12},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_12_a1/}
}
TY  - JOUR
AU  - V. A. Gordin
AU  - E. A. Tsymbalov
TI  - Compact difference scheme for the differential equation with piecewise-constant coefficient
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 16
EP  - 28
VL  - 29
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_12_a1/
LA  - ru
ID  - MM_2017_29_12_a1
ER  - 
%0 Journal Article
%A V. A. Gordin
%A E. A. Tsymbalov
%T Compact difference scheme for the differential equation with piecewise-constant coefficient
%J Matematičeskoe modelirovanie
%D 2017
%P 16-28
%V 29
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_12_a1/
%G ru
%F MM_2017_29_12_a1
V. A. Gordin; E. A. Tsymbalov. Compact difference scheme for the differential equation with piecewise-constant coefficient. Matematičeskoe modelirovanie, Tome 29 (2017) no. 12, pp. 16-28. http://geodesic.mathdoc.fr/item/MM_2017_29_12_a1/

[1] Gordin V.A., Tsymbalov E.A., “4th order difference scheme for the differential equation with variable coefficients”, Math. Models Comp. Simul., 10:1 (2018) | MR

[2] Gordin V.A., Kak eto poschitat?, MTsNMO, M., 2005, 279 pp.; 2013, 733 с.

[3] Gordin V.A., Matematika, kompiuter, prognoz pogody i drugie stsenarii matematicheskoi fiziki, Fizmatlit, M., 2010; 2013, 733 pp.

[4] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1966; МГУ, 2004, 798 с.; Tikhonov A.N., Samarskii A.A., Equations of mathematical physics, Dover Pubns, 1990, 800 с. | MR

[5] Samarskii A.A., The theory of difference schemes, Pure Applied Mathematics, 240, CRC Press, 2001, 788 pp. ; Интеллект, 2008, 504 с. | MR

[6] Fedorenko R.P., Lektsii po vychislitelnoi fizike, MFTI, M., 1994 ; Intellekt, 2008, 504 pp. | Zbl