Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties
Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 89-98.

Voir la notice de l'article provenant de la source Math-Net.Ru

The return problem of laws determining of the covering inhomogeneity of the elastic sphere characterized by minimum reflection of a plane sound wave in a preset angular sector and frequency range is considered. Based on an analytic solution to the direct problem, a functional expressing the reflection intensity is constructed and an algorithm for its minimization is proposed. Analytic expressions describing mechanical parameters of the inhomogeneous coating are obtained.
Keywords: reflection of sound, elastic sphere, inhomogeneous coating, inhomogeneity laws.
@article{MM_2017_29_11_a5,
     author = {L. A. Tolokonnikov and N. V. Larin and S. A. Skobel'tsyn},
     title = {Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {89--98},
     publisher = {mathdoc},
     volume = {29},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a5/}
}
TY  - JOUR
AU  - L. A. Tolokonnikov
AU  - N. V. Larin
AU  - S. A. Skobel'tsyn
TI  - Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 89
EP  - 98
VL  - 29
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a5/
LA  - ru
ID  - MM_2017_29_11_a5
ER  - 
%0 Journal Article
%A L. A. Tolokonnikov
%A N. V. Larin
%A S. A. Skobel'tsyn
%T Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties
%J Matematičeskoe modelirovanie
%D 2017
%P 89-98
%V 29
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a5/
%G ru
%F MM_2017_29_11_a5
L. A. Tolokonnikov; N. V. Larin; S. A. Skobel'tsyn. Modelling of inhomogeneous coating of an elastic sphere with demanded sound-reflecting properties. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 89-98. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a5/

[1] L.A. Tolokonnikov, V.V. Iudachev, “Otrazhenie i prelomlenie ploskoi zvukovoi volny uprugim ploskim sloem s neodnorodnym pokrytiem”, Izvestiia TulGU. Estestvennye nauki, 2015, no. 3, 219–226

[2] A.G. Romanov, L.A. Tolokonnikov, “Rasseyanie zvukovykh voln tsilindrom s neodnorodnym uprugim pokrytiem”, Prikladnaya matematika i mekhanika, 75:5 (2011), 850–857 | MR | Zbl

[3] L.A. Tolokonnikov, “Rasseianie naklonno padaiushchei ploskoi zvukovoi volny uprugim tsilin-drom s neodnorodnym pokrytiem”, Izvestiia TulGU. Estestvennye nauki, 2013, no. 2-2, 265–274

[4] L.A. Tolokonnikov, “Rasseyanie ploskoi zvukovoi volny uprugim sharom s neodnorodnym pokrytiem”, Prikladnaya matematika i mekhanika, 78:4 (2014), 519–526

[5] L.A. Tolokonnikov, “Difraktsiya tsilindricheskikh zvukovykh voln na uprugoi sfere s neodnorodnym pokrytiem”, Prikladnaya matematika i mekhanika, 79:5 (2015), 663–673 | MR

[6] A.O. Vatulyan, P.S. Satunovskii, “Ob opredelenii uprugikh modulei pri analize kolebanii neodnorodnogo sloya”, Doklady RAN, 414:1 (2007), 36–38 | MR | Zbl

[7] O.V. Bocharova, A.O. Vatulyan, “O rekonstruktsii plotnosti i modulya Yunga dlya neodnorodnogo sterzhnya”, Akusticheskii zhurnal, 55:3 (2009), 275–282

[8] A.O. Vatulyan, O.V. Yavruyan, I.V. Bogachev, “Identifikatsiya uprugikh kharakteristik neodno-rodnogo po tolschine sloya”, Akusticheskii zhurnal, 57:6 (2011), 723–730

[9] N.V. Larin, S.A. Skobeltsyn, L.A. Tolokonnikov, “Opredelenie zakonov neodnorodnosti ploskogo uprugogo sloya s zadannymi zvukootrazhayuschimi svoistvami”, Akusticheskii zhurnal, 61:5 (2015), 552–558 | DOI

[10] N.V. Larin, S.A. Skobeltsyn, L.A. Tolokonnikov, “Ob opredelenii lineinykh zakonov neodnorodnosti tsilindricheskogo uprugogo sloia, imeiushchego naimenshee otrazhenie v zadannom napravlenii pri rasseianii zvuka”, Izvestiia TulGU. Estestvennye nauki, 2014, no. 4, 54–62

[11] N.V. Larin, S.A. Skobeltsyn, L.A. Tolokonnikov, “Modelirovanie neodnorodnogo pokrytiya uprugoi plastiny s optimalnymi zvukootrazhayuschimi svoistvami”, Prikladnaya matematika i mekhanika, 80:4 (2016), 480–488

[12] N.N. Lebedev, Spetsialnye funktsii i ikh prilozheniia, Fizmatgiz, M.–L., 1963, 358 pp. | MR

[13] N.S. Bakhvalov, N.P. Zhidkov, G.M. Kobelkov, Chislennye metody, Binom. Laboratoriia zna-nii, M., 2008, 640 pp. | MR

[14] D. Rutkovskaia, M. Pilinskii, L. Rutkovskii, Neironnye seti, geneticheskie algoritmy i nechetkie sistemy, Goriachaia liniia-Telekom, M., 2006, 452 pp.