Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_11_a4, author = {V. S. Goun and V. S. Morozova and V. L. Polyatsko}, title = {The general purpose system for construction of two{\textendash}dimensional orthogonal grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {71--88}, publisher = {mathdoc}, volume = {29}, number = {11}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a4/} }
TY - JOUR AU - V. S. Goun AU - V. S. Morozova AU - V. L. Polyatsko TI - The general purpose system for construction of two–dimensional orthogonal grids JO - Matematičeskoe modelirovanie PY - 2017 SP - 71 EP - 88 VL - 29 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a4/ LA - ru ID - MM_2017_29_11_a4 ER -
%0 Journal Article %A V. S. Goun %A V. S. Morozova %A V. L. Polyatsko %T The general purpose system for construction of two–dimensional orthogonal grids %J Matematičeskoe modelirovanie %D 2017 %P 71-88 %V 29 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a4/ %G ru %F MM_2017_29_11_a4
V. S. Goun; V. S. Morozova; V. L. Polyatsko. The general purpose system for construction of two–dimensional orthogonal grids. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 71-88. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a4/
[1] J. F. Thompson, B. Soni, N. Weaterill (eds.), Handbook of grid generation, CRC Press, NY, 1998, 1097 pp. | MR
[2] G. Strang, G. Fix, An Analysis of the Finite Element Method, Series in Automatic Computation, Prentice-Hall Inc., Englewood Clifs, N.J., 1973, xiv+306 pp. | MR | Zbl
[3] S.K. Godunov, G. P. Prokopov, “The use of moving meshes in gas-dynamics calculations”, USSR Computational Mathematics and Mathematical Physics, 12:2 (1972), 182–195 | DOI | MR | Zbl
[4] S.K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, G.P. Prokopov, Chislennoe reshenie mnogomernyh zadach gazovoj dinamiki, Nauka, M., 1976, 400 pp.
[5] S.A. Ivanenko, G. P. Prokopov, “Methods of Adaptive Harmonic Grid Generation”, Computational Mathematics and Mathematical Physics, 37:6 (1997), 627–645 | MR | Zbl
[6] G.P. Prokopov, Postroenie ortogonalnykh raznostnykh setok posredstvom rascheta konformnykh otobrazheniy, Preprint No 45, IPM AN SSSR, M., 1970
[7] G.P. Prokopov, O raschete raznostnykh setok, blizkikh k ortogonalnym v oblastyakh s krivolineynymi granitsami, Preprint No 17, IPM AN SSSR, M., 1974
[8] A.M. Winslow, “Numerical solution of quasilinear Poisson equation in nonuniform triangle mesh”, J. Comp. Phys., 1:2 (1966), 149–172 | DOI | MR | Zbl
[9] S.K. Godunov, G. P. Prokopov, “On the computational of conformal transformations and the construction of difference meshes”, USSR Computational Mathematics and Mathematical Physics, 7:5 (1967), 89–124 | DOI | MR | Zbl
[10] G.P. Prokopov, “Nekotorye obshchie voprosy konstruirovaniya algoritmov postroeniya raznostnykh setok”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1988, no. 1, 3–13
[11] V.D. Liseykin, “A survey of methods for constructing structured adaptive grids”, USSR Computational Mathematics and Mathematical Physics, 36:1 (1996), 3–41
[12] G.P. Prokopov, “Vibor parametrov pri variatsionnom podkhode k raschetu regularnykh setok”, Keldysh Institute preprints, 2006, 014, 32 pp.
[13] G.P. Prokopov, “Realizatsiya variatsionnogo podkhoda k raschetu dvumernikh setok v nestatsionarnykh zadachakh”, Keldysh Institute preprints, 2005, 116, 36 pp.
[14] G.P. Prokopov, “Variatsionnye metody rascheta dvumernikh setok pri reshenii nestatsionarnykh zadach”, Keldysh Institute preprints, 2003, 004, 32 pp.
[15] G.P. Prokopov, “Universalnye variatsionnye funktsionaly dlya postroeniya dvumernikh setok”, Keldysh Institute preprints, 2001, 001
[16] R.N. Antonova, G.P. Prokopov, “Raschet kvaziortogonalnykh setok minimizatsiey variatsionnykh funktsionalov”, Keldysh Institute preprints, 1998, 031 | Zbl
[17] G.P. Prokopov, “Metodologiya variatsionnogo podkhoda k postroeniyu kvaziortogonalnykh setok”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1998, no. 1, 37–46
[18] R.N. Antonova, G.P. Prokopov, “Raschet gladkikh slozhnosostavnikh setok pryamoi minimizatsiey variatsionnykh funktsionalov”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1997, no. 2, 17–24
[19] R.N. Antonova, G.P. Prokopov, O.I. Sofronova, “Raschet podvizhnikh raznostnikh setok i problema nachalnogo priblizhiniya dlya setki v slozhnoy oblasti”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1996, no. 1–2, 84–90
[20] G.P. Prokopov, O.I. Sofronova, “Organizatsiya raschetov gladkikh setok v slozhnosostavnikh oblastyakh”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1996, no. 3, 9–17
[21] R.N. Antonova, G.P. Prokopov, “Sravnenie neskolkikh variantov postroeniy dvumernykh raznostnykh setok posredstvom interpolyatsionnykh formul”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1994, no. 1, 78–84
[22] G.P. Prokopov, “Konstruirovanie testovikh zadach dlya postroeniya regulyarnykh setok”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1993, no. 1, 7–13
[23] G.P. Prokopov, “Postroenie raznostnykh setok putem optimizatsii parametrov interpolyatsii formul”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1990, no. 1, 7–16
[24] G.P. Prokopov, “Ob organizatsii sravneniya algoritmov I programm postroeniya regulyarnikh dvumernikh raznostnikh setok”, Voprosy Atomnoy Nauki i Tekhniki. Matematicheskoe modelirovanie fizicheskih processov, 1989, no. 3, 98–108
[25] D. Gaier, “Ermittlung des konformen Moduls von Vierecken mit Differenzenmethoden”, Numerische Mathematik, 19 (1972), 179–194 | DOI | MR | Zbl
[26] J. Weisel, “Numerische Ermittlung quasikonformer Abbildungen mit finiten Elemente”, Numerische Mathematik, 35 (1980), 201–222 | DOI | MR | Zbl
[27] A. Ia. Gun, G. Ia. Gun, “Konformnoe otobrazhenie proizvolnogo chetyrekhugolnika na priamougolnik”, Izvestiia vysshikh uchebnikh zavedenii. Chernaia metallurgiia, 1982, no. 1, 152
[28] J. Weisel, “Losung singularer Variationsprobleme durch die Verfahren von Ritz und Galerkin mit finiten Elementen”, Anwendungen in der konformen Abbildung. Mitt. Math. Sem. Giessen, 1979, 156 | MR | Zbl
[29] J. Tri Quach, Numerical conformal mappings and capacity computation, Master's Thesis, University of Helsinki. Faculty of Science. Department of Mathematics and Statistics, 2007, 79 pp.
[30] N. Papamichael, Lectures on Numerical Conformal Mapping, Department of Mathematics and Statistics. University of Cyprus, 2008, 225 | MR
[31] M.A. Lavrentev, B.V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973, 736 pp.
[32] V.S. Gun, V.S. Morozova, V.L. Poliatsko, “Matematicheskoe modelirovanie techeniia topliva v kanalakh konusa raspylitelia”, Vestnik Iuzhnouralskogo gosudarstvennogo universiteta. Seriia: Mashinostroenie, 13:2 (2013), 74–78
[33] O.C. Zienkiewichz, The finite element method in engineering science, McGrow-Hill, London, 1971, 539 pp. | MR
[34] V.S. Kuznetsov, A.S. Shablovskiy, G.A. Troshin, “Experimental study of the hydrodynamic parameters of liquid flow in the throttle channel”, El. Sc.-Tech. Publ. “Science and Education” of Bauman MSTU, 2011, no. 10 (in Russ.) (accessed 07.07.2014) http://technomag.edu.ru/doc/230378.html
[35] V.S. Gun, V.S. Morozova, V.L. Polyacko, “Mathematical Modeling of Fuel Flow in Channels Cone Spray”, Proc. Engineering, 129 (2015), 145–150 | DOI
[36] L.V. Grekhov, N.A. Ivashchenko, V.A. Markov, Toplivnaia apparatura i sistemy upravleniia dizelei, Uchebnik dliia VUZov, Legion-Avtodata, M., 2004, 344 pp.