Modeling of ecosystems as a process of self-organization
Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors propose to use the model of the activator-inhibitor for the description of ecosystems, that are small towns surrounded by countryside. The basis of the presented model is based on the authors modified FitzHugh–Nagumo system of equations. The paper deals with analytical and numerical study of stationary solutions of the system.
Keywords: urban ecosystem, self-organization, active media, internal transition layer, Rosenbrock scheme, error corridor.
@article{MM_2017_29_11_a2,
     author = {N. T. Levashova and A. A. Melnikova and D. V. Luk'yanenko and A. E. Sidorova and S. V. Bytsura},
     title = {Modeling of ecosystems as a process of self-organization},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {40--52},
     publisher = {mathdoc},
     volume = {29},
     number = {11},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/}
}
TY  - JOUR
AU  - N. T. Levashova
AU  - A. A. Melnikova
AU  - D. V. Luk'yanenko
AU  - A. E. Sidorova
AU  - S. V. Bytsura
TI  - Modeling of ecosystems as a process of self-organization
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 40
EP  - 52
VL  - 29
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/
LA  - ru
ID  - MM_2017_29_11_a2
ER  - 
%0 Journal Article
%A N. T. Levashova
%A A. A. Melnikova
%A D. V. Luk'yanenko
%A A. E. Sidorova
%A S. V. Bytsura
%T Modeling of ecosystems as a process of self-organization
%J Matematičeskoe modelirovanie
%D 2017
%P 40-52
%V 29
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/
%G ru
%F MM_2017_29_11_a2
N. T. Levashova; A. A. Melnikova; D. V. Luk'yanenko; A. E. Sidorova; S. V. Bytsura. Modeling of ecosystems as a process of self-organization. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 40-52. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/

[1] R.A. FitzHugh, “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI

[2] D.A. Barkley, “Model for fast computer simulation of waves in excitable media”, Physica D: Nonlinear Phenomena, 49 (1991), 61–70 | DOI

[3] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third Edition, Springer-Verlag, NY, 2003, 811 pp. | MR

[4] Yu.E. Elkin, “Autowave processes”, Math. Biolog. Bioinform., 1:1 (2006), 27–40 | DOI

[5] V.S. Savenko, Geokhimicheskie aspekty ustoichevogo razvitiia, GEOS, M., 2003, 180 pp.

[6] A.E. Sidorova, N.T. Levashova, A.A. Melnikova, L.V. Yakovenko, “A Model of a Human Dominated Urban Ecosystem as an Active Medium”, Biofizika, 60:3 (2015), 574–582

[7] V.F. Butuzov, N.T. Levashova, A.A. Melnikova, “Steplike Contrast Structure in a Singularly Perturbed System of Equations with Different Powers of Small Parameter”, Computational Mathematics and Mathematical Physics, 52:11 (2012), 1526–1546 | DOI | MR | Zbl

[8] V.F. Butuzov, N.T. Levashova, A.A. Melnikova, “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Computational Mathematics and Mathematical Physics, 53:9 (2013), 1239–1259 | DOI | MR | Zbl

[9] V.A. Vasilev, Iu.M. Romanovskij, V.G. Iakhno, Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.

[10] N.N. Kalitkin, P.V. Koriakin, Chislennye metody, v. 2, Metody matemeticheskoj fiziki, Izdatelskiy tsentr Akademia, M., 2013, 303 pp.

[11] N.N. Kalitkin, “Chislennye metody resheniia zhostkikh system”, Matem. mod., 7:5 (1995), 8–11

[12] E. Hairer, G. Wanner, Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems, Springer-Verlag, 2002, 614 pp. | MR

[13] H.H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comp. J., 5:4 (1963), 329–330 | DOI | MR | Zbl

[14] N.N. Kalitkin, A.B. Alshin, E.A. Alshina, B.V. Rogov, Vychislenia na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.

[15] A.B. Al'shin, E.A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, Journal of Mathematical Sciences, 148:1 (2008), 143–162 | DOI | MR | Zbl