Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2017_29_11_a2, author = {N. T. Levashova and A. A. Melnikova and D. V. Luk'yanenko and A. E. Sidorova and S. V. Bytsura}, title = {Modeling of ecosystems as a process of self-organization}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {40--52}, publisher = {mathdoc}, volume = {29}, number = {11}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/} }
TY - JOUR AU - N. T. Levashova AU - A. A. Melnikova AU - D. V. Luk'yanenko AU - A. E. Sidorova AU - S. V. Bytsura TI - Modeling of ecosystems as a process of self-organization JO - Matematičeskoe modelirovanie PY - 2017 SP - 40 EP - 52 VL - 29 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/ LA - ru ID - MM_2017_29_11_a2 ER -
%0 Journal Article %A N. T. Levashova %A A. A. Melnikova %A D. V. Luk'yanenko %A A. E. Sidorova %A S. V. Bytsura %T Modeling of ecosystems as a process of self-organization %J Matematičeskoe modelirovanie %D 2017 %P 40-52 %V 29 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/ %G ru %F MM_2017_29_11_a2
N. T. Levashova; A. A. Melnikova; D. V. Luk'yanenko; A. E. Sidorova; S. V. Bytsura. Modeling of ecosystems as a process of self-organization. Matematičeskoe modelirovanie, Tome 29 (2017) no. 11, pp. 40-52. http://geodesic.mathdoc.fr/item/MM_2017_29_11_a2/
[1] R.A. FitzHugh, “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1 (1961), 445–466 | DOI
[2] D.A. Barkley, “Model for fast computer simulation of waves in excitable media”, Physica D: Nonlinear Phenomena, 49 (1991), 61–70 | DOI
[3] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Third Edition, Springer-Verlag, NY, 2003, 811 pp. | MR
[4] Yu.E. Elkin, “Autowave processes”, Math. Biolog. Bioinform., 1:1 (2006), 27–40 | DOI
[5] V.S. Savenko, Geokhimicheskie aspekty ustoichevogo razvitiia, GEOS, M., 2003, 180 pp.
[6] A.E. Sidorova, N.T. Levashova, A.A. Melnikova, L.V. Yakovenko, “A Model of a Human Dominated Urban Ecosystem as an Active Medium”, Biofizika, 60:3 (2015), 574–582
[7] V.F. Butuzov, N.T. Levashova, A.A. Melnikova, “Steplike Contrast Structure in a Singularly Perturbed System of Equations with Different Powers of Small Parameter”, Computational Mathematics and Mathematical Physics, 52:11 (2012), 1526–1546 | DOI | MR | Zbl
[8] V.F. Butuzov, N.T. Levashova, A.A. Melnikova, “A Steplike Contrast Structure in a Singularly Perturbed System of Elliptic Equations”, Computational Mathematics and Mathematical Physics, 53:9 (2013), 1239–1259 | DOI | MR | Zbl
[9] V.A. Vasilev, Iu.M. Romanovskij, V.G. Iakhno, Avtovolnovye protsessy, Nauka, M., 1987, 240 pp.
[10] N.N. Kalitkin, P.V. Koriakin, Chislennye metody, v. 2, Metody matemeticheskoj fiziki, Izdatelskiy tsentr Akademia, M., 2013, 303 pp.
[11] N.N. Kalitkin, “Chislennye metody resheniia zhostkikh system”, Matem. mod., 7:5 (1995), 8–11
[12] E. Hairer, G. Wanner, Solving of Ordinary Differential Equations. Stiff and Differential-Algebraic Problems, Springer-Verlag, 2002, 614 pp. | MR
[13] H.H. Rosenbrock, “Some general implicit processes for the numerical solution of differential equations”, Comp. J., 5:4 (1963), 329–330 | DOI | MR | Zbl
[14] N.N. Kalitkin, A.B. Alshin, E.A. Alshina, B.V. Rogov, Vychislenia na kvaziravnomernykh setkakh, Fizmatlit, M., 2005, 224 pp.
[15] A.B. Al'shin, E.A. Al'shina, “Numerical diagnosis of blow-up of solutions of pseudoparabolic equations”, Journal of Mathematical Sciences, 148:1 (2008), 143–162 | DOI | MR | Zbl