Modeling of the contact interaction between a nonuniform foundation and rough punch
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 95-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Contact problem for a double foundation and a rigid punch is considered. It is assumed that the surface nonuniformity of the thin upper layer and the shape of the die base can be described by complex rapidly changing functions. A projection method is developed which allows one to obtain the solution of the equation with high accuracy that cannot be done by known methods. An algorithm of numerical-analytical calculation is described. A model example is presented.
Keywords: contact interaction, nonuniformity, coating, foundation, integral equation.
@article{MM_2017_29_10_a8,
     author = {A. V. Manzhirov and K. E. Kazakov},
     title = {Modeling of the contact interaction between a nonuniform foundation and rough punch},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {95--104},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a8/}
}
TY  - JOUR
AU  - A. V. Manzhirov
AU  - K. E. Kazakov
TI  - Modeling of the contact interaction between a nonuniform foundation and rough punch
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 95
EP  - 104
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a8/
LA  - ru
ID  - MM_2017_29_10_a8
ER  - 
%0 Journal Article
%A A. V. Manzhirov
%A K. E. Kazakov
%T Modeling of the contact interaction between a nonuniform foundation and rough punch
%J Matematičeskoe modelirovanie
%D 2017
%P 95-104
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a8/
%G ru
%F MM_2017_29_10_a8
A. V. Manzhirov; K. E. Kazakov. Modeling of the contact interaction between a nonuniform foundation and rough punch. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 95-104. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a8/

[1] V.M. Aleksandrov, S.M. Mkhitarian, Kontaktnye zadachi dlia tel s tonkimi pokrytiiami i prosloikami, Nauka, M., 1983, 487 pp.

[2] A. V. Manzhirov, “On a method of solving two-dimensional integral equations of axisymmetric contact problems for bodies with complex rheology”, J. Appl. Math. Meth., 49:6 (1985), 777–782 | DOI | MR | Zbl

[3] N. Kh. Arutiunian, V. E. Naumov, A. V. Manzhirov, Kontaktnye zadachi mekhaniki rastushchikh tel, Nauka, M., 1991, 176 pp.

[4] V. M. Aleksandrov, A. V. Manzhirov, “Two-dimensional integral equations in applied mechanics of deformable solids”, J. Appl. Mech. Tech. Phys., 28:5 (1987), 781–786 | DOI

[5] A. V. Manzhirov, V. A. Chernysh, “Contact problem for a layered inhomogeneous aging cylinder reinforced by a rigid ring”, J. Appl. Mech. Tech. Phys., 31:6 (1990), 894–900 | DOI

[6] N. Kh. Arutiunian, A. V. Manzhirov, Kontaktnye zadachi teorii polzuchesti, Izd-vo NAN RA, Erevan, 1999, 318 pp.

[7] A. V. Manzhirov, “A mixed integral equation of mechanics and a generalized projection method of its solution”, Dokl. Phys., 61:10 (2016), 489–493 | DOI | MR

[8] K. E. Kazakov, “Kontaktnye zadachi dlia tel s pokrytiiami”, Vestnik SamGU. Estestvennonauchnaia seriia, 2007, no. 4(54), 176–196

[9] K. E. Kazakov, A. V. Manzhirov, “Conformal contact between layered foundations and punches”, Mech. Solids, 43:3 (2008), 512–524 | DOI

[10] K. E. Kazakov, “Modeling of contact interaction for solids with inhomogeneous coatings”, J. Phys.: Conf. Ser., 181 (2009), 012013 | DOI

[11] A. V. Manzhirov, K. E. Kazakov, “Contact problem for a foundation with a rough coating”, Lecture Notes in Engineering and Computer Science, 2224, no. 1, 2016, 877–882