Numerical modelling of vapor phase epitaxy with diffusion processes
Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 75-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical model of heat conduction with features of heat and mass transfer during vapor phase epitaxy on a curvilinear surface is offered. With use of an integro-interpolation method the differential scheme is constructed, the numerical solution of an objective is found. Approximation and stability of the differential scheme are investigated. Examples of numerical calculation for various materials are provided.
Keywords: vapor phase epitaxy, heat equation, curvilinear surface, difference scheme.
@article{MM_2017_29_10_a6,
     author = {G. N. Kuvyrkin and I. Yu. Savelyeva and A. V. Zhuravsky},
     title = {Numerical modelling of vapor phase epitaxy with diffusion processes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {75--85},
     publisher = {mathdoc},
     volume = {29},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2017_29_10_a6/}
}
TY  - JOUR
AU  - G. N. Kuvyrkin
AU  - I. Yu. Savelyeva
AU  - A. V. Zhuravsky
TI  - Numerical modelling of vapor phase epitaxy with diffusion processes
JO  - Matematičeskoe modelirovanie
PY  - 2017
SP  - 75
EP  - 85
VL  - 29
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2017_29_10_a6/
LA  - ru
ID  - MM_2017_29_10_a6
ER  - 
%0 Journal Article
%A G. N. Kuvyrkin
%A I. Yu. Savelyeva
%A A. V. Zhuravsky
%T Numerical modelling of vapor phase epitaxy with diffusion processes
%J Matematičeskoe modelirovanie
%D 2017
%P 75-85
%V 29
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2017_29_10_a6/
%G ru
%F MM_2017_29_10_a6
G. N. Kuvyrkin; I. Yu. Savelyeva; A. V. Zhuravsky. Numerical modelling of vapor phase epitaxy with diffusion processes. Matematičeskoe modelirovanie, Tome 29 (2017) no. 10, pp. 75-85. http://geodesic.mathdoc.fr/item/MM_2017_29_10_a6/

[1] A.I. Gusev, Nanomaterialy, nanostruktury, nanotekhnologii, Fizmatlit, M., 2005, 416 pp.

[2] R.A. Andrievskii, A.V. Ragulia, Nanostrukturnye materialy, Izdatelskii tsentr Akademiia, M., 2005, 192 pp.

[3] V.Iu. Vasilev, S.M. Repinsky, “Chemical vapour deposition of thin-film dielectrics”, Russ. chemical rewiews, 74:5 (2005), 413–441 | DOI

[4] A.V. Tikhonravov, A.V. Kochikov, T.V. Amochkina, F.V. Grigorev, O.A. Kondakova, V.B. Sulimov, “Supercompiuternoe modelirovanie sovremennykh protsessov napyleniia opticheskikh nanopokrytii”, Vych. met. i programmirovanie, 13:4 (2012), 491–496

[5] F.F. Komarov, V.V. Pilko, I.M. Klimovich, “Influence of conditions employed in application of Ti-Zr-Si-N nanostructured coatings on their composition, structure, and tribomechanical properties”, J. Eng. Phys. Thermophys., 88:2 (2015), 358–363 | DOI

[6] A.V. Kostanovsky, M.K. Gusev, “Osazhdenie tonkikh plenok pri vacuum-termicheskom isparenii nitride aliuminiia”, Teplofiz. Vys. Temp., 33:1 (1995), 163–166

[7] Yu.Ya. Lukomsky, G.M. Priyatkin, T.V. Mulina, V.R. Opolovnikov, V.L. Kiseleva, A.V. Kolchugin, O.L. Noskova, “Electrolytic deposition of metals on aluminium and its alloys”, Russ. chemical rewiews, 60:5 (1991), 539–554 | DOI

[8] I.G. Marchenko, I.I. Marchenko, “Nediffuzionnye mekhanizmy atomnogo uporiadocheniia pri nizkotemperaturnom osazhdenii medi”, Pisma Zh. Eksp. Teor. Fiz., 89:7 (2009), 396–401

[9] G.N. Kuvyrkin, A.V. Zhuravskii, I.Yu. Savel'eva, “Mathematical, odeling of chemical vapor deposition of material on a curvilinear surface”, J. Eng. Phys. Thermophys., 89:6 (2016), 1–6 | DOI

[10] G.N. Kuvyrkin, Termomekhanika deformiruemogo tverdogo tela pri vysokointensivnom nagruzhenii, Izd. MGTU im. N.E. Baumana, M., 1993, 145 pp.

[11] V.S. Zarubin, G.N. Kuvyrkin, I.Yu. Savel'eva, “Critical and optimum thickness of thermal insulation at radiation and convective heat exchange”, High Temp., 54:6 (2016), 831–836 | DOI

[12] D.A. Frank-Kamenetskii, Diffuziya i teploperedacha v khimicheskoi kinetike, Nauka, M., 1987, 502 pp.

[13] G.N. Dulnev, Teoriia teplo- i massoobmena, NIU ITMO, St. Petersburg, 2012, 195 pp.

[14] M.P. Galanin, E.B. Savenkov, Metody chislennogo analiza matematicheskikh modelei, Izd. MGTU im. N.E. Baumana, M., 2010, 591 pp.

[15] N.N. Kalitkin, Chislennye metody, Nauka, M., 1978, 512 pp.

[16] V.S. Ryabenky, Vvedenie v vychislitelnuiu matematiku, Nauka, M., 1994, 336 pp.

[17] A.A. Samarskii, Teoriia rasnostnykh skhem, Nauka, M., 1977, 656 pp.

[18] http://libmetal.ru/