On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 73-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Landau (Fokker–Planck) integral for Coulomb collisions is an attributive constituent of physical and mathematical models of laboratory and space plasmas, as well, in which regime of intermediate collisionality is important. In this paper the study of direct statistical modeling of the Monte Carlo type method for the kinetic equation with a nonlinear operator LFP for Coulomb collisions is considered. The method is based on the approximation of the Landau collision integral by the Boltzmann integral. The paper has two objectives: first, to get numerical estimates of the approximation order of the Landau collision integral by the Boltzmann integral; and secondly, to explore the possibility of optimization of algorithm for the multicharged ions. The results are illustrated by simulation of the relaxation problem for one and two components.
Mots-clés : Coulomb collisions, Landau–Fokker–Planck equation
Keywords: Boltzmann equation, Monte Carlo method, order of approximation, multicharged ions.
@article{MM_2016_28_9_a5,
     author = {S. A. Karpov and I. F. Potapenko and A. V. Bobylev},
     title = {On the accuracy of direct simulation the {Landau} collision integral by the {Boltzmann} integral},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {73--93},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/}
}
TY  - JOUR
AU  - S. A. Karpov
AU  - I. F. Potapenko
AU  - A. V. Bobylev
TI  - On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 73
EP  - 93
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/
LA  - ru
ID  - MM_2016_28_9_a5
ER  - 
%0 Journal Article
%A S. A. Karpov
%A I. F. Potapenko
%A A. V. Bobylev
%T On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral
%J Matematičeskoe modelirovanie
%D 2016
%P 73-93
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/
%G ru
%F MM_2016_28_9_a5
S. A. Karpov; I. F. Potapenko; A. V. Bobylev. On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 73-93. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/

[1] L. D. Landau, “Kinetic equation for the case of Coulomb interaction”, Phys. Zn. Sov. Union, 10 (1936), 154 | Zbl

[2] M. N. Rosenbluth, W. M. MacDonald, D. Judd, “Fokker–Planck equation for an inverse-square force”, Phys. Rev., 107 (1957), 1 | DOI | MR | Zbl

[3] B. A. Trubnikov, “Stolknoveniia chastits v polnostiu ionizovannoi plazme”, Voprosy teorii plazmy, 1, Gosatomizdat, M., 1963, 98–182

[4] Iu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskoe modelirovanie plazmy, Nauka, M., 1982, 338 pp.

[5] C. F. F. Karney, “Fokker–Planck and quasi linear code”, Computer Physics Reports, 4 (1986), 183–244 | DOI

[6] C. Cercignani, Theory and application of Boltzman equation, Scottish Academic Press Ltd., Edinburgh–London, 1975 | MR | MR

[7] A. V. Bobylev, “On expansion of Boltzmann integral into Landau series”, Sov. Phys. Dokl., 20 (1976), 865–887 | MR

[8] A. V. Bobylev, “Priblizhenie Landau v kineticheskoi teorii gazov i plazmy”, Keldysh Institute preprints, 1974, 076, 49 pp.

[9] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “Metod Monte-Karlo dlia dvukhkomponentnoi plazmy”, Matematicheskoe modelirovanie, 24:9 (2012), 35–49 | MR | Zbl

[10] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “Monte-Karlo simulation of the Kinetic Collisional Equation with External Fields”, Matematical Models and Computer Simulations, 6:6 (2014), 598–611 | DOI | MR | Zbl

[11] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “DSMC methods for multicomponent plasmas”, AIP Conference Proceedings, 1501, 2012, 541–548 | DOI

[12] A. V. Bobylev, I. F. Potapenko, “Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas”, J. Comput. Phys., 246 (2013), 123–144 | DOI | MR

[13] V. P. Silin, Vvedenie v kineticheskuiu teoriiu gazov, Nauka, M., 1971, 332 pp.

[14] G. A. Bird, Molecular gas dynamics and direct simulation of gas flows, Clarendon Press, Oxford, 1994, 458 pp. | MR

[15] A. V. Bobylev, S. A. Karpov, I. F. Potapenko, “Metod Monte-Karlo dlia dvukhkomponentnoi plazmy”, Keldysh Institute preprints, 2012, 021, 27 pp.

[16] M. Kac, Probability and related topics in physical sciences, Interscience Publishers, London–New York, 1957, 266 pp. | MR

[17] A. V. Bobylev, K. Nanbu, “Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau–Fokker–Planck equation”, Phys. Rev. E, 61 (2000), 4576–4586 | DOI | MR

[18] K. Nanbu, “Theory of cumulative small-angle collisions in plasmas”, Phys. Rev. E, 55 (1997), 4642–4652 | DOI

[19] A. V. Bobylev, E. Mossberg, I. F. Potapenko, “A DSMC method for the Landau–Fokker–Planck equation”, Proceedings of XXV International symposium on RGD (2006), 479–483