Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_9_a5, author = {S. A. Karpov and I. F. Potapenko and A. V. Bobylev}, title = {On the accuracy of direct simulation the {Landau} collision integral by the {Boltzmann} integral}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {73--93}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/} }
TY - JOUR AU - S. A. Karpov AU - I. F. Potapenko AU - A. V. Bobylev TI - On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral JO - Matematičeskoe modelirovanie PY - 2016 SP - 73 EP - 93 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/ LA - ru ID - MM_2016_28_9_a5 ER -
%0 Journal Article %A S. A. Karpov %A I. F. Potapenko %A A. V. Bobylev %T On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral %J Matematičeskoe modelirovanie %D 2016 %P 73-93 %V 28 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/ %G ru %F MM_2016_28_9_a5
S. A. Karpov; I. F. Potapenko; A. V. Bobylev. On the accuracy of direct simulation the Landau collision integral by the Boltzmann integral. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 73-93. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a5/
[1] L. D. Landau, “Kinetic equation for the case of Coulomb interaction”, Phys. Zn. Sov. Union, 10 (1936), 154 | Zbl
[2] M. N. Rosenbluth, W. M. MacDonald, D. Judd, “Fokker–Planck equation for an inverse-square force”, Phys. Rev., 107 (1957), 1 | DOI | MR | Zbl
[3] B. A. Trubnikov, “Stolknoveniia chastits v polnostiu ionizovannoi plazme”, Voprosy teorii plazmy, 1, Gosatomizdat, M., 1963, 98–182
[4] Iu. N. Dnestrovskii, D. P. Kostomarov, Matematicheskoe modelirovanie plazmy, Nauka, M., 1982, 338 pp.
[5] C. F. F. Karney, “Fokker–Planck and quasi linear code”, Computer Physics Reports, 4 (1986), 183–244 | DOI
[6] C. Cercignani, Theory and application of Boltzman equation, Scottish Academic Press Ltd., Edinburgh–London, 1975 | MR | MR
[7] A. V. Bobylev, “On expansion of Boltzmann integral into Landau series”, Sov. Phys. Dokl., 20 (1976), 865–887 | MR
[8] A. V. Bobylev, “Priblizhenie Landau v kineticheskoi teorii gazov i plazmy”, Keldysh Institute preprints, 1974, 076, 49 pp.
[9] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “Metod Monte-Karlo dlia dvukhkomponentnoi plazmy”, Matematicheskoe modelirovanie, 24:9 (2012), 35–49 | MR | Zbl
[10] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “Monte-Karlo simulation of the Kinetic Collisional Equation with External Fields”, Matematical Models and Computer Simulations, 6:6 (2014), 598–611 | DOI | MR | Zbl
[11] A. V. Bobylev, I. F. Potapenko, S. A. Karpov, “DSMC methods for multicomponent plasmas”, AIP Conference Proceedings, 1501, 2012, 541–548 | DOI
[12] A. V. Bobylev, I. F. Potapenko, “Monte Carlo methods and their analysis for Coulomb collisions in multicomponent plasmas”, J. Comput. Phys., 246 (2013), 123–144 | DOI | MR
[13] V. P. Silin, Vvedenie v kineticheskuiu teoriiu gazov, Nauka, M., 1971, 332 pp.
[14] G. A. Bird, Molecular gas dynamics and direct simulation of gas flows, Clarendon Press, Oxford, 1994, 458 pp. | MR
[15] A. V. Bobylev, S. A. Karpov, I. F. Potapenko, “Metod Monte-Karlo dlia dvukhkomponentnoi plazmy”, Keldysh Institute preprints, 2012, 021, 27 pp.
[16] M. Kac, Probability and related topics in physical sciences, Interscience Publishers, London–New York, 1957, 266 pp. | MR
[17] A. V. Bobylev, K. Nanbu, “Theory of collision algorithms for gases and plasmas based on the Boltzmann equation and the Landau–Fokker–Planck equation”, Phys. Rev. E, 61 (2000), 4576–4586 | DOI | MR
[18] K. Nanbu, “Theory of cumulative small-angle collisions in plasmas”, Phys. Rev. E, 55 (1997), 4642–4652 | DOI
[19] A. V. Bobylev, E. Mossberg, I. F. Potapenko, “A DSMC method for the Landau–Fokker–Planck equation”, Proceedings of XXV International symposium on RGD (2006), 479–483