Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_9_a1, author = {Yu. N. Shtanov and V. P. Koshcheev and D. A. Morgun and T. A. Panina}, title = {Modeling of atomic diffusion coefficient of channeled particles}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {24--30}, publisher = {mathdoc}, volume = {28}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/} }
TY - JOUR AU - Yu. N. Shtanov AU - V. P. Koshcheev AU - D. A. Morgun AU - T. A. Panina TI - Modeling of atomic diffusion coefficient of channeled particles JO - Matematičeskoe modelirovanie PY - 2016 SP - 24 EP - 30 VL - 28 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/ LA - ru ID - MM_2016_28_9_a1 ER -
%0 Journal Article %A Yu. N. Shtanov %A V. P. Koshcheev %A D. A. Morgun %A T. A. Panina %T Modeling of atomic diffusion coefficient of channeled particles %J Matematičeskoe modelirovanie %D 2016 %P 24-30 %V 28 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/ %G ru %F MM_2016_28_9_a1
Yu. N. Shtanov; V. P. Koshcheev; D. A. Morgun; T. A. Panina. Modeling of atomic diffusion coefficient of channeled particles. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 24-30. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/
[1] I. I. Olkhovskii, N. M. Sadykov, “Klassicheskie kineticheskie uravneniia dlia orientatsionnykh effektov s uchetom dvukhchastichnoi korreliatsionnoi funktsii kristalla”, Trudy 10 Vsesoiuznogo soveshchaniia po fizike vzaimodeistviia zariazhennykh chastits s kristallami, v. 1, Izdatelstvo MGU, M., 1980, 173–179
[2] V. A. Bazylev, N. K. Zhevago, Izluchenie bystrykh chastits v veshchestve i vo vneshikh poliakh, Nauka, M., 1987, 269 pp.
[3] V. P. Koscheev, “Korrelyatsionnaya funktsiya i yadernyi koeffitsient diffuzii kanalirovannykh chastits”, Izv. Vuzov. Fizika, 1997, no. 8, 32–37
[4] A. V. Boreskov, A. A. Kharlamov, Osnovy raboty s tekhnologiei CUDA, DMK Press, M., 2010, 232 pp.
[5] A. Mazzolari, et al., “Steering of a sub-GeV electron beam through planar channeling enhanced by Rechanneling”, Phys. Rev. Lett., 112 (2014), 135503 | DOI
[6] U. Wienands, et al., “Observation of deflection of a beam of multi-GeV electrons by a thin crystal”, Phys. Rev. Lett., 114 (2015), 074801 | DOI
[7] http://wwwinfo.jinr.ru/programs/jinrlib/tropics/index.html
[8] M. Kitagawa, Y. H. Ohtsuki, “Modified dechanneling theory and diffusion coefficients”, Phys. Rev. V, 8:7 (1973), 3117–3123 | DOI
[9] J. Lindhard, “Influence of crystal lattice on motion of energetic charged particles”, Mat.-Fys. Medd. Dan. Vid. Selsk., 34:14 (1965), 64 | DOI
[10] V. P. Koshcheev, D. A. Morgun, T. A. Panina, Stokhasticheskaia dinamika effekta kanalirovaniia v kristallakh i nanotrubkakh, Poligrafist, Khanty-Manciisk, 2008, 100 pp.
[11] Iu. N. Shtanov, D. A. Morgun, A. S. Fokin, Parallelnoe vychislenie potentsialov dlia osevogo kanalirovaniia na videokartakh, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2014618657, Rospatent, M., 2014
[12] A. V. Priimak, “Optimizatsiia vychislenii na CUDA pri modelirovanii neustoichivosti lengmiurovskikh voln v plazme”, Visnik NTUU «KPI». Informatika, upravliniia ta obchisliuvalna tekhnika, 2013, no. 58, 125–130
[13] D. S. Gemmel, “Channeling and related effects in the motion of charged particles through crystals”, Rev. Mod. Phys., 46:1 (1974), 129–235 | DOI
[14] P. A. Doyle, P. S. Turner, “Relativistic Hartree-Fock X-ray and electron scattering factors”, Acta Cryst. A, 24 (1968), 390–397 | DOI
[15] V. P. Koscheev, D. A. Morgun, Yu. N. Shtanov, “Modelirovanie protsessa otkloneniya relyativistskikh chastits v osevykh i ploskostnykh kanalakh”, Pisma v ZhTF, 39:20 (2013), 77–86
[16] G. Marsaglia, T. A. Bray, “A convenient method for generating normal variables”, SIAM Rev., 6:3 (1964), 260–264 | DOI | MR | Zbl