Modeling of atomic diffusion coefficient of channeled particles
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

Atomic diffusion coefficient of channeled particles built on Doyle–Turner approach of potential of an isolated atom. It is shown that the atomic diffusion coefficient seeks to the minimum value in the region of maximum nuclear density of atomic chain, where the diffusion coefficient of Kitagawa–Ohtsuki reaches its maximum value. Modeling atomic diffusion coefficient performed by a computer program TROPICS upgraded for calculating on heterogeneous structures.
Keywords: modelling of atomic diffusion coefficient, expansion in trigonometric Fourier series, supercomputer AIC-5 VNIIEF, graphics accelerator.
@article{MM_2016_28_9_a1,
     author = {Yu. N. Shtanov and V. P. Koshcheev and D. A. Morgun and T. A. Panina},
     title = {Modeling of atomic diffusion coefficient of channeled particles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--30},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/}
}
TY  - JOUR
AU  - Yu. N. Shtanov
AU  - V. P. Koshcheev
AU  - D. A. Morgun
AU  - T. A. Panina
TI  - Modeling of atomic diffusion coefficient of channeled particles
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 24
EP  - 30
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/
LA  - ru
ID  - MM_2016_28_9_a1
ER  - 
%0 Journal Article
%A Yu. N. Shtanov
%A V. P. Koshcheev
%A D. A. Morgun
%A T. A. Panina
%T Modeling of atomic diffusion coefficient of channeled particles
%J Matematičeskoe modelirovanie
%D 2016
%P 24-30
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/
%G ru
%F MM_2016_28_9_a1
Yu. N. Shtanov; V. P. Koshcheev; D. A. Morgun; T. A. Panina. Modeling of atomic diffusion coefficient of channeled particles. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 24-30. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/

[1] I. I. Olkhovskii, N. M. Sadykov, “Klassicheskie kineticheskie uravneniia dlia orientatsionnykh effektov s uchetom dvukhchastichnoi korreliatsionnoi funktsii kristalla”, Trudy 10 Vsesoiuznogo soveshchaniia po fizike vzaimodeistviia zariazhennykh chastits s kristallami, v. 1, Izdatelstvo MGU, M., 1980, 173–179

[2] V. A. Bazylev, N. K. Zhevago, Izluchenie bystrykh chastits v veshchestve i vo vneshikh poliakh, Nauka, M., 1987, 269 pp.

[3] V. P. Koscheev, “Korrelyatsionnaya funktsiya i yadernyi koeffitsient diffuzii kanalirovannykh chastits”, Izv. Vuzov. Fizika, 1997, no. 8, 32–37

[4] A. V. Boreskov, A. A. Kharlamov, Osnovy raboty s tekhnologiei CUDA, DMK Press, M., 2010, 232 pp.

[5] A. Mazzolari, et al., “Steering of a sub-GeV electron beam through planar channeling enhanced by Rechanneling”, Phys. Rev. Lett., 112 (2014), 135503 | DOI

[6] U. Wienands, et al., “Observation of deflection of a beam of multi-GeV electrons by a thin crystal”, Phys. Rev. Lett., 114 (2015), 074801 | DOI

[7] http://wwwinfo.jinr.ru/programs/jinrlib/tropics/index.html

[8] M. Kitagawa, Y. H. Ohtsuki, “Modified dechanneling theory and diffusion coefficients”, Phys. Rev. V, 8:7 (1973), 3117–3123 | DOI

[9] J. Lindhard, “Influence of crystal lattice on motion of energetic charged particles”, Mat.-Fys. Medd. Dan. Vid. Selsk., 34:14 (1965), 64 | DOI

[10] V. P. Koshcheev, D. A. Morgun, T. A. Panina, Stokhasticheskaia dinamika effekta kanalirovaniia v kristallakh i nanotrubkakh, Poligrafist, Khanty-Manciisk, 2008, 100 pp.

[11] Iu. N. Shtanov, D. A. Morgun, A. S. Fokin, Parallelnoe vychislenie potentsialov dlia osevogo kanalirovaniia na videokartakh, Svidetelstvo o gosudarstvennoi registratsii programmy dlia EVM No 2014618657, Rospatent, M., 2014

[12] A. V. Priimak, “Optimizatsiia vychislenii na CUDA pri modelirovanii neustoichivosti lengmiurovskikh voln v plazme”, Visnik NTUU «KPI». Informatika, upravliniia ta obchisliuvalna tekhnika, 2013, no. 58, 125–130

[13] D. S. Gemmel, “Channeling and related effects in the motion of charged particles through crystals”, Rev. Mod. Phys., 46:1 (1974), 129–235 | DOI

[14] P. A. Doyle, P. S. Turner, “Relativistic Hartree-Fock X-ray and electron scattering factors”, Acta Cryst. A, 24 (1968), 390–397 | DOI

[15] V. P. Koscheev, D. A. Morgun, Yu. N. Shtanov, “Modelirovanie protsessa otkloneniya relyativistskikh chastits v osevykh i ploskostnykh kanalakh”, Pisma v ZhTF, 39:20 (2013), 77–86

[16] G. Marsaglia, T. A. Bray, “A convenient method for generating normal variables”, SIAM Rev., 6:3 (1964), 260–264 | DOI | MR | Zbl