Modeling of atomic diffusion coefficient of channeled particles
Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 24-30

Voir la notice de l'article provenant de la source Math-Net.Ru

Atomic diffusion coefficient of channeled particles built on Doyle–Turner approach of potential of an isolated atom. It is shown that the atomic diffusion coefficient seeks to the minimum value in the region of maximum nuclear density of atomic chain, where the diffusion coefficient of Kitagawa–Ohtsuki reaches its maximum value. Modeling atomic diffusion coefficient performed by a computer program TROPICS upgraded for calculating on heterogeneous structures.
Keywords: modelling of atomic diffusion coefficient, expansion in trigonometric Fourier series, supercomputer AIC-5 VNIIEF, graphics accelerator.
@article{MM_2016_28_9_a1,
     author = {Yu. N. Shtanov and V. P. Koshcheev and D. A. Morgun and T. A. Panina},
     title = {Modeling of atomic diffusion coefficient of channeled particles},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {24--30},
     publisher = {mathdoc},
     volume = {28},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/}
}
TY  - JOUR
AU  - Yu. N. Shtanov
AU  - V. P. Koshcheev
AU  - D. A. Morgun
AU  - T. A. Panina
TI  - Modeling of atomic diffusion coefficient of channeled particles
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 24
EP  - 30
VL  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/
LA  - ru
ID  - MM_2016_28_9_a1
ER  - 
%0 Journal Article
%A Yu. N. Shtanov
%A V. P. Koshcheev
%A D. A. Morgun
%A T. A. Panina
%T Modeling of atomic diffusion coefficient of channeled particles
%J Matematičeskoe modelirovanie
%D 2016
%P 24-30
%V 28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/
%G ru
%F MM_2016_28_9_a1
Yu. N. Shtanov; V. P. Koshcheev; D. A. Morgun; T. A. Panina. Modeling of atomic diffusion coefficient of channeled particles. Matematičeskoe modelirovanie, Tome 28 (2016) no. 9, pp. 24-30. http://geodesic.mathdoc.fr/item/MM_2016_28_9_a1/